The Landau - Levich problem (1942)

I ho Drawing a sheet at a constant speed at of ^a bath of liquid

- Review modelling of thin films
-

The dynamic equation
\n
$$
F(x,z,t) = x - h(z,t) = 0
$$

\n $\begin{cases}\n\frac{\partial h}{\partial t} + \frac{\partial h}{\partial z} = 0, & \Omega = \int_{0}^{h} u \, dx \\
\frac{\partial h}{\partial t} + \frac{\partial h}{\partial z} = 0, & \Omega = \int_{0}^{h} u \, dx\n\end{cases}$
\n $\begin{cases}\n\frac{\partial u}{\partial t} + \frac{\partial u}{\partial t} = 0, & \Omega = \int_{0}^{h} u \, dx \\
\frac{\partial u}{\partial t} + \frac{\partial v}{\partial t} = 0, & \Omega = \int_{0}^{h} u \, dx\n\end{cases}$ vertational velocity

$$
\rho\left(\frac{\partial u}{\partial t} + u \cdot \nabla u\right) = -\nabla \rho + \mu \hat{v}^T u + \rho \underline{g} \longrightarrow \frac{\partial f}{\partial x} = 0 \Rightarrow \rho = \rho(z)
$$

$$
-\frac{\partial f}{\partial z} + \mu \frac{\partial u}{\partial x^2} + \mu \frac{\partial u}{\partial z^2} - \rho \underline{g} = 0
$$

We now have a slightly different form of μ field:

$$
u = \pm \frac{1}{2\mu} \left(\frac{\partial P}{\partial \hat{z}} + \rho g \right) x^2 + C_1 x + C_2
$$

 $0n \times = 0$, $U(o) = C_2 = U$ θ _n $x = h$, $\frac{\partial u}{\partial x} = \frac{2}{2h} \left(\frac{\partial \phi}{\partial z} + \phi \right) h + C_1 = 0$ $u = \frac{1}{2\mu} \left(\frac{\partial \rho}{\partial \xi} + \rho g \right) \left(x^2 - z h x \right) + U$

Use continuity condition to show that

$$
Q = \int_0^h u dx = -\frac{1}{3\mu} \left(\frac{\partial P}{\partial t} + \rho g \right) h^3 + U h
$$

780

and, with $p = p_{atm} - \gamma \frac{\partial^2 h}{\partial x^2}$, $\frac{\partial h}{\partial t} + U h_z + \frac{1}{3\mu} \frac{\partial}{\partial z} \left| h^3 \left(\gamma \frac{\partial^3 h}{\partial z^3} - \rho g \right) \right| = 0$

Natural to use U to rescole 4, but there is no intrinsic length scale (ho is

nice but it is unknown a priori). So use an arbitrary l first.

$$
T = b/t_{*} , \quad H = h/l , \quad \xi = \varepsilon/l
$$

$$
\frac{\partial H}{\partial T} \cdot \frac{l}{t^*} + U H_z + \frac{1}{3\mu} \frac{\partial}{\partial z} \left[\overrightarrow{\beta H}^3 \left(\gamma H_{zzz} \overrightarrow{\ell}^2 - \frac{\rho g \overrightarrow{\ell}}{6} \alpha \overrightarrow{\ell} \right) \right] = o
$$

We rewrite as $\frac{\partial H}{\partial T} + H_{z} + \left[\frac{H^{3}}{3G_{\alpha}} (H_{zzz} - B_{0}) \right]_{z} = 0$

by choosing $t^* = 1/U$ and $C_a \equiv \frac{\mu U}{\gamma}$ (Capillary number) measuring the strength of viscous force $(\neg \mu U/t)$ compared to capillary

forces $(\sim \gamma h_{\infty} \sim \gamma / l)$

. The steady state problem (Scaling nise)

$$
h_0
$$
 - the film thicknen at $z \rightarrow \infty$ is of most interest.

. Balancing gravity and viscosity

$$
\frac{\rho gh_{\infty}}{\mu U/h_{\infty}} \sim 1 \rightarrow h_{\infty} - \left(\frac{\mu U}{\rho g}\right)^{1/2} \sim \ell_{c} C_{a}^{1/2}
$$

Thus can also be obtained by $-g\rho^{2} \mu \frac{g_{u}}{dx^{2}} + \rho g = 0$

. Balancing capillarity and viscosity

Matching conditions between the film and meniscus gives $\frac{1}{l^{2}} \times \frac{1}{l^{2}} \to \ell \times (h \circ l_{c})^{l_{c}}$ $\nabla h_0^{\frac{1}{2}} l_c^{-\frac{3}{2}} \sim \mu U h_0^{-2} \rightarrow h_0 \sim l_c C_0^{2/3}$

In experiments

. The steady state problem for Ca<< 1 (Landau-Levich)

Static meniscus

Haven disseured home le Ca^d relation, may choose $l = l_c$ to solve the problem.

$$
\beta_{0} = \frac{\rho g \ell_{c}^{2}}{\gamma} = 1 \Rightarrow \frac{\partial H}{\partial T} + H_{z} + \left[\frac{1}{3C_{A}} H^{3} (H_{zzz} - 1) \right]_{z} = 0
$$

$$
\mathcal{V}_{\text{other}} + \gamma \nabla \cdot \mathbf{0} + \mathcal{C} \mathbf{0}^2 = \mathbf{V}_{\text{other}}
$$

non-dimensionalized varsion reads The

$$
\frac{H_{zz}}{(H_{z})^{3/2}} - Z = c
$$

subject to

$$
H(\mathcal{Z}_0) = \text{Cov1}.
$$

$$
H^{'}(\mathcal{Z}_{0}) = 0
$$

$$
H \rightarrow \infty , H_{z} \rightarrow -\infty \quad \text{as} \quad \pm \rightarrow 0
$$

where \overline{z}_o is the apparent contact point above the free surface.

Integrating once gives:
\n
$$
\frac{H_z}{(H_z^2)^{1/2}} = \frac{1}{2}z^2 + C = \frac{1}{2}(\overline{z}^2 - \overline{z}_0^2)
$$

after using H¹(Zo) = 0. Rearranging gives

$$
\frac{H_{\ell}^{2}}{1+H_{\ell}^{2}} = 1 - \frac{1}{1+H_{\ell}^{2}} = \frac{1}{4} \left(\xi^{2} - \xi^{2} \right)^{2} \Rightarrow H_{\ell} = \frac{\xi^{2} - \xi^{2}}{\left[4 - \left(\xi^{2} - \xi^{2} \right)^{2} \right]} v_{2} < 0
$$

 83

As
$$
z \to 0
$$
 we find
\n
$$
H_z = \frac{-z_0^2}{(4 - z_0^4)^{v_2}} \to -\infty
$$
 only if $z_0 = \sqrt{2}$

We must choos z_{0} = $\sqrt{2}$. This is now enough for us to deterime the local

behavior near $z = z_0$ (Which is what we need to match with the thin film

region).

$$
H_{22}(\mathcal{Z}_{0}) = \mathcal{Z}_{0} = \sqrt{2} \qquad (\n\mathcal{H}^{\sim t} \frac{1}{\ell_{c}} \vee)
$$

 $LogL_0$ cally, we have $H(z) = H(z_0) + H(z_0) (z-z_0) + \frac{1}{2}H_{zz}(z_0) (z-z_0)^2 + \cdots$, i.e.,

$$
H(z) = \frac{(z - \overline{z}_0)}{\sqrt{2}}, \quad \text{as } z \to z_0
$$

The wall region

As $z \rightarrow z$, the fluid form a thin film on the wall. The steady state equation now is $H_{2} + \frac{1}{36}H \left(H_{222} - 1 \right) \Big|_{\mathcal{Z}} = 0$ Let's first see any simplification that can be made by Ca<<1. We are

interested in the behavior as we approach z_0 , so pose the rescaled vertical (84)

length near
$$
Z_0
$$
:
\n
$$
\underline{Z} = Z_0 + \underline{\ell} \overline{Z} + \underline{\ell}^2 \hat{Z} + \underline{\ell}^3 \hat{Z} \cdots
$$
\n
$$
\underline{Z} = Z_0 + \underline{\ell} \overline{Z} + \underline{\ell}^3 \hat{Z} + \underline{\ell}^3 \hat{Z} \cdots
$$

The meniscus solution suggests $H = \frac{1}{\sqrt{2}} \epsilon^2 \overline{z}^2$. Therefore, set $H = \epsilon^2 \overline{H} + \epsilon^* \overline{H} + \cdots$

$$
\overline{H}(\overline{z}) = H/\mathcal{E}^{2} , \overline{z} = \frac{1}{\mathcal{E}}(z-\overline{z}_{0}) , \frac{\partial}{\partial \overline{z}} = \frac{\partial}{\partial \overline{z}} \cdot \frac{\partial \overline{z}}{\partial \overline{z}} = \frac{\partial}{\partial \overline{z}} \cdot \frac{1}{\mathcal{E}}
$$

The steady state equation becomes

$$
\frac{\epsilon^2}{\epsilon} \overline{H}_{\overline{z}} + \frac{1}{\epsilon} \left[\frac{1}{3C_A} \epsilon^6 \overline{H}^3 \left(\frac{\epsilon^3}{\epsilon^3} \overline{H}_{\overline{z} \overline{z} \overline{z}} - 1 \right) \right]_{\overline{z}} = 0
$$

\n
$$
\Rightarrow \overline{H}_{\overline{z}} + \left[\frac{\epsilon^3}{3C_A} \overline{H}^3 \left(\overline{H}_{\overline{z} \overline{z} \overline{z}} - \epsilon \right) \right]_{\overline{z}} = 0
$$

For $Ca\ll 1$, surface tension is important in the dynamics. So take $E = Ca^{1/3} \ll 1$ and have

$$
\overline{H}_{\overline{z}} + \left[\frac{1}{3} \overline{H}^3 \left(\overline{H}_{\overline{z} \overline{z} \overline{z}} - \epsilon \right) \right]_{\overline{z}} = 0
$$

demonstrating that gravity is not important in the thin film regoin at leading order.

At leading order $O(\epsilon^{\circ})$, we have \overline{H} + $\frac{1}{3}$ $\left(\overline{H}^3 \overline{H}$ \overline{E} \overline{E}

subject to

$$
\overline{H} \rightarrow \overline{H}_{b} = H_{b} \varepsilon^{-2} = \frac{h_{o}}{c} \left(\alpha^{-2/3} \sim 0(1) \quad \text{as} \quad \overline{z} \rightarrow \infty \right)
$$

$$
\overline{H} \sim \frac{1}{\sqrt{2}} \overline{z}^{2} \quad \text{as} \quad \overline{z} \rightarrow -\infty
$$

where F is to be determined. Interprating \circledast once gives

$$
\overline{H} + \frac{1}{3} \overline{H}^3 \overline{H}_{\overline{z} \overline{z} \overline{z}} = \overline{H}_\circ
$$
 (85)

We know \overline{H}_{o} is not arbitrary. Instead, there is a specific choice of \overline{H}_{o} so that the behavior is matched as $\overline{z} \rightarrow -\infty$. What is it?

· Examination of the behavior as \bar{z} + ∞

Linearization: $\overline{H} = \overline{H}_0 + \frac{1}{2}$ with $|f| \ll \overline{H}_0$

$$
\Rightarrow \quad \bigg\{ + \frac{1}{3} \, \overline{H}_0^3 \, \bigg\{ \overline{z} \, \overline{z} \, \overline{z} \, = 0
$$

Seek solutions in the form $f = e^{2\bar{z}}$

$$
1 + \frac{1}{3} \overrightarrow{H}_{0}^{3} \lambda^{3} = 0, \lambda = \frac{3^{1/3}}{\overrightarrow{H}_{0}} e^{i \pi / 3} - \frac{3^{1/3}}{\overrightarrow{H}_{0}} e^{-i \pi / 3}
$$

\n
$$
-e^{i(\pi + 2n\pi)}, n = 0, 1, 2...
$$

\n
$$
\rightarrow \left\{ = A \exp\left[-3^{1/3} \overrightarrow{z}/\overrightarrow{H}_{0}\right] + B \exp\left[3^{1/3} e^{i \pi / 3} \overrightarrow{z}/\overrightarrow{H}_{0}\right] + C \exp\left[3^{1/3} e^{i \pi / 3} \overrightarrow{z}/\overrightarrow{H}_{0}\right]
$$

\n
$$
1 + \frac{1}{3} \overrightarrow{H}_{0}^{3} \lambda^{3} = 0, \lambda = \frac{3^{1/3}}{\overrightarrow{H}_{0}} e^{i \pi / 3} - \frac{3^{1/3}}{\overrightarrow{H}_{0}} e^{-i \pi / 3}
$$

\n
$$
1 + \frac{1}{3} \overrightarrow{H}_{0}^{3} \lambda^{3} = 0, \lambda = \frac{3^{1/3}}{\overrightarrow{H}_{0}} e^{i \pi / 3} - \frac{3^{1/3}}{\overrightarrow{H}_{0}} e^{-i \pi / 3}
$$

\n
$$
1 + \frac{1}{3} \overrightarrow{H}_{0}^{3} \lambda^{3} = 0, \lambda = \frac{3^{1/3}}{\overrightarrow{H}_{0}} e^{i \pi / 3} - \frac{3^{1/3}}{\overrightarrow{H}_{0}} e^{-i \pi / 3}
$$

• Examination of the behavior as \overline{z} - 00

Linearization:
$$
\overline{H} = \frac{1}{\sqrt{2}} \overline{z}^2 + \frac{1}{\sqrt{2}} \text{ with } |f| \ll \frac{1}{\sqrt{2}} \overline{z}^2
$$

\n
$$
\frac{1}{\sqrt{2}} \overline{z}^2 + \frac{1}{\sqrt{2}} \overline{z}^6 + \frac{1}{\overline{2}} \overline{z}^5 + \frac{1}{\overline{2}} \overline{z}^7 + \frac{1}{\over
$$

. The system is translation-invariant.

Fix the origin removes a degree of freedom. This is equivalent to
Fixing the coefficient A. Let
$$
A = \overline{H}
$$
 - we are particularly interested in
the behavior at $\pm \infty$.

 \bigcirc

Now rescale the ode by $\overline{H} = \overline{H}_0 g$, $\overline{Z} = \overline{H}_0 f$ and seek solution to

$$
9 + \frac{1}{3}g^{3}g_{zzz} = 1
$$

\n $9 \times 1 + e^{-3^{1/3}g}$ as $9 \rightarrow +\infty$
\n $9 \times \frac{\overline{H}_{0}}{\sqrt{2}} g^{2}$ as $9 \rightarrow -\infty$

Note that as $g\rightarrow\infty$ $(g\rightarrow-\infty)$, g_{zzz} has to $g\circ$ to 0 , ...e., $g \propto g^2$. Numerical

shooting from infinity we find

$$
g \sim 0.67 g^2
$$
 as $g \rightarrow -\infty$

Thus. $\overline{H}_{0} = 0.67 \times \sqrt{2} = 0.948$, *i.e.*,

$$
h_{\text{o}} = \text{o.948}
$$
 $l_{c}C_{\text{a}}^{2/3} = \text{o.948}$ $\left(\frac{\gamma}{\rho g}\right)^{1/2} \left(\frac{\mu U}{\gamma}\right)^{2/3} = \text{o.948}$ $\frac{\mu^{2/3} U^{2/3}}{\gamma^{1/3} e^{1/3} g^{1/3}}$

• Silicone oil: $\{g \sim \text{base Mm}^3, \ \gamma = 20 \text{ mJ/m}^2, \ \mu = 10^{-2} \text{ Pa} \cdot \text{s}$, $U = 1 \text{ mm/s}$ ℓ \sim 1.6mm, $G \sim 10^{-4}$, ho $\sim 10 \mu m$

• Jump out of pool:
$$
l = \frac{9800 \text{ N/m}^3}{1000 \text{ N/m}^3}
$$
, $\gamma = 72 \text{ mJ/m}^2$, $\mu = 10^{-3} \text{ m} \cdot \text{S}$, $U = 1 \text{ m/s}$
 $l_c \sim 2.7 \text{ mm}$. $G \sim 10^{-2}$, $h_o \sim 0.15 \text{ mm}$

Other examples

Withdrawing ^a fiber from ^a bath

$$
Matching \quad V_1 \quad \Rightarrow \quad \frac{h}{l^2} \sim \frac{1}{R} \quad \Rightarrow \quad l \sim (h, R)^{1/2}
$$

$$
\mathcal{M} \frac{U}{h_{\circ}^2} \sim \gamma \frac{h_{\circ}}{l^3} \Rightarrow \quad h_{\circ} \sim R \left(\frac{\mathcal{M} U}{\delta}\right)^{2/3}
$$

$$
\Rightarrow h_{0} = \begin{cases} 0.95 l_{c} C_{a}^{2/3}, & \text{for plots} \\ 1.34 R C_{a}^{2/3}, & \text{for fibers, where } R \ll l_{c} \end{cases}
$$

Landan-Leuich.

Displacement of an interface in ^a tube

Air evacuating ^a waterfilled pipette or pumping oil out of rock with water

Drop moving ^a liquid lubricated surfaces

In Daniel et al. Nat. Phys. (2017), it is found $h \sim R$ Ω

 $\sqrt{88}$

The force needed is calculated by assuming dissipation

mostly occurring at the rim of length
$$
l
$$
.

\n
$$
F \sim 2\pi R l \times L_s
$$
\n
$$
L_s \sim \frac{L}{h_o}
$$
\n
$$
\Rightarrow F \sim \frac{2\pi \mu U R l}{h_o} = \frac{2\pi \mu U R l R l_o}{R l_o^{2/3}} \approx l_{\infty} \sqrt{R h_o} R l_o^{1/3}
$$
\n
$$
= 2\pi \gamma R l_o^{2/3}
$$