
 

Fluid dynamics

Thin film dewetting Real
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In previous lectures we have discussed the shape of a sessile drop

Now the questions arise for a thin film dewetting into drops
WhenHowHowfast

When does it occur

What is the characteristic size of
the dewetting regions

Howfastdoes it happen

To answer these questions first need a dynamics equation for h
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Conservation of mais
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Similarly we have
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leads to
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Use the kinematic boundary
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Navier stokesequation for an incompressible Newtonian viscous fluid
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Diffusion

Before proceeding let us dissuss the scaling due to the thin geometry
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as long asREGI x II Re É 1 IReduced Reynolds number Inertia

may be neglected even though
Re is not that small

We then consider the stokes equations
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We focus on long wavelength limit f e't Theflow is mostly unidirectional a.k.a

lubrication approximation
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The pressure is approximately hydrostatic the flow is quasi parallel tothe boundary
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Boundary conditions
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Conservation of mass 1ft 7.9 0 gives
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Aside What if E is notthat small
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Our four has been on the leading order result 0 E

Typical source of pressure gradients

electric
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Constants
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ID thin film dewetting Neglecting gravity
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In statics 31 0 In dynamics If 0 whether a perturbation grows or decay

linear stability analysis
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We obtain linearized form of govering equation

31 5 34 II EI

Since this linearizedequation has coefficients Independent of x and t seek

separable solution of form
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The characteristic equation is
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Nowconsider a 2D inviscid flow with infinitedepth
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Continuity
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Momentum
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Linearization

Consider small amplitude so that I and iftar mall so is a run

We then have linearized governing equations
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Thesimplestguest base pressure difference is more interesting

in y direction than x direction
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The solution is pAef BeRT
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Now back to the
momentumequation dynamic boundary condition
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We finally have
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Longer waves travel faster

Boat as ice at le Influence of g negligible Capillary ware
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Short waves travel fastest I

Elasto capillary waves
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Stress boundary condition 780
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Scaling point of view
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