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Thin Film Materials by L.BFreund S Suresh Thin films have been inserted into

engineering systems in order to accomplish a wide range of practical servicefunctions

Amongthese are micro handelectronicdevices and packages MEMS and surface coating

To a large extent the sulcess of this endeavor has been enabled by research leadingto

reliable means for estimating stress in small material syzygy and by establishing frameworks

in which to access the integrity or functionality of theftc BVPforthin films

Let us first consider a 2D case We'll show many concepts obtained in 2Dsystems apply

to more general 3D problems

We consider partially nonlinear kinematics i.e moderate rotation and linear material laws
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Finally linearmaterial lawgives M BY K Iii s u for moderaterotations
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We are interested in the energy release rate in this system Consider a region that is

close to theedge of the delamination zone At this levelof observation theedge is

essentially straight and the state of deformation is generalized plane strain
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Theenergy release rate for advance of the delamination front is determined by theedge

loads Na and Ma whichare notknown a priori in general Need to solve the BVP

According to Hutchison Suo 1991 the stress intensityfactors are
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Buckle delamination
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Let us solve for this boundary value problem
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Now we know the solution for buckledfilm Let'scompute the energy release rate

Ufat I E E h l 2b where l is thetotal length ofthefilm
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We can also obtain this according to the local observation

font
AND GELE 1 EKE Mb Bw b BA

G IEEN.it gf E1E F
E If if 43 44k

As thesubstrate is verysoft Panetal IJSS2014 ortheinterface

is slippy Daiet al JMPs 2020 sothatΔNb 0 Gs is notimportant

T If I BÉ 214Bff DVella etal PNAS2009



930
Lastly let's try J integral
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Pressurized bulge of uniform width

The straightsided bulge configuration is perhaps of

less practical significance thanthe circularcase But RigidFItrate

the mechanical response of the film canbe described
a

fu N

in a fairly transparent way at various levels of
PITCH

approximations useful for introducing ideas

Now the deflection results fromexternal loading P positively definedupward

B8 4 NIT p
There are threesources ofelastic energy bending stretching residual stress Letus consider

a scaling argument
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This case leads to the simplest level of approximation linearplate theory
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This configurational driving force for delamination at the edge of the pressurized

zone can be calculated by Eq on P90with oNa o

P
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Large deflection response UbuUs

If the center point deflection 8 increases to values on the order of h we need to

consider the generated membrane stress in the film dueto transverse deflection in

addition to residual membrane stress Here we consider a simplified case inwhichNm
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What is membrane response as 1 Imagine zero bendingmodulusplate Ndate P its

solution is simply W ÉÑ1 It satisfies w as o butnot w at o

Note that we still don't knowwhat N or E is Need to use BCs aboutinplanedisplacement
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Now we are able to determine Na and Ma in terms of specifically
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Etf Baff s as 1 plate limit

E 28 4 2 3 as 1 membrane limit Needtocheck

Membrane response Us Ub

Still consider Nm 0 so that Us Ub means Eh40 B a i e so h uh

Needtobecareful about lb twoways toanalyze

Prescribed P or prescribedS Let's do the latter
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What is the energy release rate Two perspectives

From the point of view of Ffa Kendall's peeling angle
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It should be noted here that applies to the peeling problem with any 0

In particular when 0 is nottooclose to 0 N in we have G NCICoso i.e

peeling at D G Pc

This result is neat and nice but it doesnot give anything at KI KI or4
which needs information at Na and Ma



From the point of view of boundary layer analysis

Want to understand what is going on near x a Return the unsimplified equation

at the level of observation lb i e in dimensionless form
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Circular pressurized bulge Find

Let's still focus on linear material law and moderate rotation
NZwin

In the axisymmetric configuration there's a pair ofis r

pᵗ equilibrium equations see Mansfield 2005

as

Out of plane equilibrium equation

teeing
In plane equilibriumequation
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Let's examine the elastic energy density associated with bending induced

tension and residual tension

Up a BK B B 4 Bending

Usu Ehe Eh Eh Inducedtension

Up NmEsn Nm Nm Residual tension

Thesystem can be linearized as long as Us is not important since only this term

involves nonlinear kinematics Forexample whenUp Us i e Eh Nm bothNru

and Noo approach Nm The in planeequation is satisfied automatically and the out

of plane equation becomes
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The solution can be readily obtained work
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and W CaIo Far CgK Ar where I andko are modified Bessel functions of the first

andthe second kind of order 0 Seek solution of in the form of MWAW
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Finally let's discuss the membrane response with Nm 0 Onceagain start with scalings

En S a E YIv 592 strain level at the center

is s isPYwIEh Ea p SIdEh
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Need to solve the boundary value problem
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Hencky's solution 1915 see NASATechnical Report L 17585
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Hencky solved this problem by assuming the following form

Nrr EhPa I ban f w Ef I am I ta

Noo Ekp'd anti ban t

Plugging theseinto gives
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Now the only unknown is bo to be determined with boundary conditions Note that

W 6 E Yfr
a o has beensatisfied in the assumed form of Nr w The

unused condition comes from Ulr a NIK a o since Nm 0 i e
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0 0.2 b 16827 0 0.3 b 1.7244
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Simplified Kinematics Williams 1997 Wan him 1998 Freund Suresh 2004

Yueet at 2012 Dai et at 2018

The idea is to assume kinematically admissible deformation fields and then

determine the unknown coefficients using the principle of minimum potentialenergy

Forexample a simple two parameter form has been used

i
Then radial and hoop strain components can be calculated immediately

Err 1 25 28 Eoo 1 f

The elastic strain energy per unit area is

win 24 Eri 20ErrEoo Go

Thetotal potential energy can be calculated as

T no 8 2T Url rdr 2Tpfwar dr

The relation between p and s and Uo can be obtained by solving

2
0
0 0

I willnot show the results here since the accuracy given by this method

is not satifactory Dai et al PRL 2018 showed using Ucr no 1 can

help slightly Furtherimproving the accuracy needs more terms in the assumed

kinematics butwould lose its advantages in simplicity compared toHennky



105
Perturbed spherical cap shapes Dai 5AM 2024

The idea is that the shape of the bulge is not a spherical capexactly But

it appears quite close Naturally seek solution around a parabola

S 1 f 121 1 Solution I

was 8 1 5 β Iβ as solution I

1 5 1 E Kk1 Solution

Regarding the in plane displacement field instead of assuming a kinematically

admissible form one can directly solve for it based on in plane equilibrium

equation in terms of displacements

rNor Nooo t 1 fit fiff o

TMontinnearterm now isexplicit

For example plugging was in solution I togetherwith 4107 4 a o can give

an s I E

Then we can use kinematic relations to calculate Err Ego and TICS 21 Find

using principle of minimum potentialenergy 8 3 0 as well as 12141 leadst

dine 10257 441 1530 E sin gig gift
based on
solution I



Similarly these parameters can be calculated by using solution I I If
it is found Solution I with N 5 works particularlywell Specifically
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Circular pressurized hyperelastic bulge

r ri R Z z1R Yhir
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Xr to in denote principalstretches of themembranealong the radial hoop andthicknessdirection

currentthickness

Ar fritzi to IR it to initial thickness

We assume the film is incompressible so that in to Xt 1 i e h ho Arno

The volume of the bulge is f 2trzdr 2trr'zdR

The total potential energy can be written as

I ofEggergy
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where W W ar to is the strain energy per unit volume in the undeformed configuration

Therefore I T r r Z Z Let's then examine STIwithSR.to since we want to

know G STISTRY
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Let's first examine the two Lagrangians
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What is the physical picture of It Too We learnt bij 3 so expect 1 andIno
will give rise to something like stress
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Material law 11

Having given the equilibrium equations we need to specify a material law to proceed

There are various types of material laws we consider two of commonly used for soft

materials
shearmodulus of the membrane

Neo Hookean model W I no 3

material on

variant ofcandy arena
Great model W Jmlog i i e Iitr E

Ritto w̅o

Note that as 5m31 Gent model behaves as I 3 Jmi So wewill try Gentmode

with a range of Jm

de
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n
txFi mJmaxoiIiia4
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ma F Gta 9026

6 2h5m22 Jm X anominalstress
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Using Gent material model we obtain

No ntoJma.comI itio
iraoxixoNoMtoJm if Jm 3 dir to trio

Numerics

Let's first solve the system with some natural boundary conditions

Z 101 0 z at 0 rios fig Rtu R o real fig Rtu al aorgalal 1

You'll find bup solvers notquiteefficientdue to a good deal of nonlineavities May

try to solve a ivpproblem using shooting method The idea is to replace 2 second

order coupled ODEs regarding r Z with 4 first order ODEs There are manyoptions

while we take to ROCK DEMIR Z Z R PLRI here
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Theseequations complete the 4 ODES f yn R which can be solved with

initial conditions 9,10 given otherparameters including µ a Jm p

A 107 Ro o R 10 0 2107 8

However and I are not known a priori thevalue of them should ensure that

to 1 and 2 0 at R A
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Energy release rate
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The membrane substrate interface toughness IsayG is finite Theninterested in at which

pressure the interface breaks i e gaps Go How to calculate this G Ffa

One immediate way is to compute T.atgiven a and p and T2 at a tea with oct 1

Then GCP fig I 5 IFate Theotherway is to fing STI etasa via

variational analysis Now revisit the boundary terms on Page 108
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G IEiiiiriijfra9 towlr

Atsmallstretcher in it Er W NrEr Nof

G NCI cost IN Er r a

which returns to Kendall's peeling angle obtained using linearelasticity


