
 

Westergaard's stress function

First consider the III anti planeshear problem which can be formulated

as
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For plane stress strain problems thegoverning equation is biharmonic
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Consider cracks on the x axis with symmetric loading such that
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Since 20421 is an analytic function we can always take ylz z 4z

and we assure that equations of elasticity are satisfied However the

solutions these functions generate only satisfy a limited set of boundary

conditions In particular they have
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Define Mode I Westergaard stress function as Z fz 20 z
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Useful for Ide solutions for cracks on the x axis in infinite 2Dspaces

Next consider mode I type loadings which we showed dictates antisymmetry
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Displacement fields
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With these definition of Westergaard stress functions it turns out many problems

have similar solutions in differentmodes Forexample the asymptotic solutions look

like

ZI Z

E E tt have dimensionof

stress
Zar KI

Example

KI KI KI6

Let's look at mode I first

Te

6



Boundary conditions Note Ogy ReZ yImZI 6x ReZ YIMZI
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Branch cut DITTED

We have focused on seca but whendealing with Ksa ZI is double

multi valued Need to use branchcats through branch points We oftenhave

the following two scenarios
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i Forcenter cracks may take a finite branch cut below
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Anti plane anisotropic crack tip fields

We have presumed the asymptotic form Zen 2 5 Does this work for

more general anisotropicelasticity Examine this for Mode I
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Note that
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Now consider the crack solution
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