Determination of K

Having known the K-G relation. the next question to answer is how to determine K for ^a given elasticity problem

 $\bigcircled{2}$

Aeryn use stresses in front of the cracktop or the crack opening or shearing sliding displacements behind the cracktip

$$
K_{I} = lim_{r\to0} \sqrt{2\pi r} S_{yy}(r, \theta=0)
$$

\n $K_{I} = lim_{r\to0} \sqrt{2\pi r} S_{xy}(r, \theta=0)$
\n $K_{II} = lim_{r\to0} \sqrt{2\pi r} S_{yz}(r, \theta=0)$
\n $K_{II} = lim_{r\to0} \sqrt{2\pi r} S_{yz}(r, \theta=0)$
\n $meterial$

$$
\begin{array}{c}\n\mathbf{O} \Gamma \\
\hline\n\text{True only for} \\
\text{isotropic materials}\n\end{array}\n\qquad\n\begin{cases}\n\mathbf{k}_{\perp} = \lim_{r \to 0} \frac{E}{8} \lim_{N \to 0} \left[u_{y}(r, \theta = \pi) - u_{y}(r, \theta = -\pi) \right] \\
\mathbf{k}_{\perp} = \lim_{r \to 0} \frac{E}{8} \lim_{N \to 0} \left[u_{x}(r, \theta = \pi) - u_{x}(r, \theta = -\pi) \right] \\
\mathbf{k}_{\perp} = \lim_{r \to 0} \frac{\mu}{4} \lim_{N \to 0} \left[u_{z}(r, \theta = \pi) - u_{z}(r, \theta = -\pi) \right]\n\end{cases}
$$

Then the rest would be to solve for μ or α from (mixed) boundar value problem with given geometry and boundary conditions. Accordingly, we can apply methods such as separation of varibles, transform method, Wiener-Hof technique, Green's function, conformal mapping, complex varible method, and DNS.
used loter himited success will be used esteroively

Transform method

let's consider the center crack problem again but solve it by transform method. $\frac{171}{171}$
 $\frac{19}{20}$ = $\frac{111}{111}$ + $\frac{1140}{6}$ $\frac{11}{6}$ $\frac{11}{6}$ Governing equation: $\nabla^2 \vec{v} \phi = o \left(= \nabla^4 u - \nabla^4 u^2 \right)$ Boundary conditions: $C_{xy} = 0$ or $y = 0$, $\Delta_{yy} = -\Delta$ on $y = 0$, $|x| < \alpha$ $V = 0$ on $Y = 0$, $|X| > 0$ all terms > 0 as y > 00 Fourier transform: $\int_{-\infty}^{\infty} f(x) e^{ikx} dx = H(f)$ Inverse $FT:$ $f(x) = \frac{1}{2T} \int_{-\infty}^{\infty} \hat{f}(k) e^{-ikx} dk = H^{1}(f)$ Property: $\int_{-\infty}^{\infty} \frac{df}{dx} e^{ikx} dx = f e^{ikx} \Big|_{-\infty}^{\infty} - ik \int_{-\infty}^{\infty} f e^{ikx} dx \rightarrow f' = -ik \overline{f}$ \rightarrow H $(\nabla^2(\vec{v} \phi)) = (\frac{d^2}{d\psi^2} - \kappa^2) \phi = 0$ The solution can be written in the form

$$
\widetilde{\phi}(k, y) = (A + By) e^{-|k|y} + (c + Dy) e^{+|k|y}
$$

(28)

29 To determine integration constants, we need to obtain expression of stresses and displacements in term of \oint .

$$
\begin{aligned}\n\overline{\delta}_{xx} &= \int_{-\infty}^{\infty} \delta_{xx} e^{ikx} dx = \int_{-\infty}^{\infty} \frac{\partial^2 \phi}{\partial y^2} e^{ikx} dx = \frac{\partial^2 \phi}{\partial y^2} \\
\overline{\delta}_{yy} &= \int_{-\infty}^{\infty} \frac{\partial^2 \phi}{\partial x^2} e^{ikx} dx = -k^2 \overline{\phi} \\
\overline{\delta}_{xy} &= \int_{-\infty}^{\infty} \frac{\partial^2 \phi}{\partial x \partial y} e^{ikx} dx = +ik \frac{\partial^2 \phi}{\partial y}\n\end{aligned}
$$

At $y=0$, $\sigma_{yy} = -\rho c \times D \Rightarrow -k^2 \hat{\phi}\Big|_{y=\phi} = -Ak^2 = -\tilde{\rho}(k) \Rightarrow A = \tilde{\rho}(k)/k^2$
Antifrary even function

$$
6xy = 0 \implies \frac{3\overline{\phi}}{3y} \Big|_{y=0} = -|k|A + B = 0 \implies B = \tilde{P}(k)/|k|
$$

\n
$$
\implies \overline{\phi} = \frac{\tilde{\rho}(k)}{k^2} (1 + |k|y) e^{-|k|y}
$$

\n
$$
\therefore \overline{6}xy = -\tilde{p} (1 - |k|y) e^{-|k|y}
$$

\n
$$
\therefore \overline{6}xy = -i\tilde{p}ky e^{-|k|y}
$$

\n
$$
\therefore \overline{6}xy = -i\tilde{p}ky e^{-|k|y}
$$

\n
$$
x = \frac{1}{2}i\tilde{p}k
$$

Once we know p(x), we can calculate $\widetilde{p}(k)$ and then $\widetilde{\delta_{ij}}$ & δ_{ij} . While $p(x) = 8$ for $|x| < a$, $p(x)$ for $|x| > a$ is also part of the solution to ensure $v(x) = 0$. We then need expressions for u and v as well.

$$
\mathcal{E}_{x} = \frac{\partial u}{\partial x} = \frac{1}{E} (\langle \frac{\partial u}{\partial x} - v^{T} \rangle_{\text{avg}}) \rightarrow -i k \tilde{u} = \frac{1}{E} (\langle \frac{\partial u}{\partial x} - v^{T} \rangle_{\text{avg}})
$$
\n
$$
\rightarrow \tilde{u} = \frac{i \tilde{p}}{E^{T} k} [-(-v^{T}) + (1+v)^{T} k] \text{ and } \frac{1}{E^{T} k} \text{ and } \frac{1}{E^{T} k}
$$
\n
$$
\mathcal{E}_{x} = \frac{1}{2} (\frac{\partial u}{\partial y} + \frac{\partial v}{\partial z}) = \frac{1+v^{T}}{E^{T}} \langle \frac{\partial u}{\partial x} \rangle = \frac{1+v^{T}}{E^{T}} \langle \frac{\partial u}{\partial x} \rangle = \frac{i+v^{T}}{E^{T} k} \frac{\partial u}{\partial x} - i k \tilde{v} = \frac{2(1+v^{T})}{E^{T}} \langle \frac{\partial u}{\partial x} \rangle
$$
\n
$$
\rightarrow \tilde{v} = \frac{\tilde{p}}{E^{T} k} [2 + (1+v^{T}) \mid k] \text{ and } \tilde{v} = \frac{1}{E^{T} k} \text
$$

We are proticularly interested in Syy and v , associated with which BCs are.

$$
\langle y_{y} = \frac{-1}{2\pi} \int_{-\infty}^{\infty} \underbrace{\tilde{p}(1+|k|y) e^{-ik|x}}_{\text{Even of } R} e^{-ikx} dk = -\frac{4}{\pi} \int_{0}^{\infty} \tilde{p}(1+ky) e^{-ky} \cos kx dk
$$
\n
$$
V = \frac{1}{2\pi} \int_{-\infty}^{\infty} \underbrace{\tilde{p}}_{E|k|} [2+(1+Y^T)|k|y] e^{-ikx} dk = -\frac{1}{2\pi} \int_{0}^{\infty} \tilde{p}[2+(1+Y^T)|k|y] e^{-ky} \frac{\cos kx}{k} dk
$$

On the swolare of y=0, we have

$$
\langle y_y = -\frac{1}{\pi} \int_0^{\infty} \tilde{p}(k) \cos kx dk, \quad v(x) = \frac{2}{\pi E} \int_0^{\infty} \tilde{p}(k) \frac{c \sin kx}{k} dk
$$

We see therefore that the equations determining $\widetilde{p}(k)$ are the dual integral equations.

$$
\frac{2}{\pi} \int_{6}^{\infty} \overline{p}(k) \cos kx \, dk = P(x) \quad , \quad 0 \le x \le q
$$

$$
\int_{0}^{\infty} \overline{p}(k) \, \frac{\cos kx}{k} \, dk = 0 \quad , \quad x > q
$$

The duel integral equations (often in mixed BVP) need to solved numerically in general.

However, for this problem, we can make use of Busbridge's solution.

$$
k = k \cdot a, \quad x = \frac{k}{a}, \quad \tilde{p} = \tilde{p}/k^{1/2}, \quad p = a \left(\frac{\pi}{2x}\right)^{1/2} p, \quad \text{as } k = \left(\frac{\pi k x}{2}\right)^{1/2} \text{ J}_{-\frac{1}{2}}(kx)
$$
\n
$$
\Rightarrow \begin{cases}\n\int_{0}^{\infty} k \tilde{p}(k) J_{-\frac{1}{2}}(kx) dk = p(x), & \text{as } x \le 1 \\
\int_{0}^{\infty} \tilde{p}(k) J_{-\frac{1}{2}}(kx) dk = 0, & \text{as } x > 1\n\end{cases}
$$

 $\bigcircled{3}$

Sneddon showed the solution (Page 424)

$$
\widetilde{P}(k) = \left(\frac{2k}{\pi}\right)^{1/2} \left[J_{0}(k) \int_{0}^{1} x^{1/2} (1-x^{2})^{1/2} P(x) dx + k \int_{0}^{1} x^{1/2} (1-x^{2})^{1/2} dx \int_{0}^{1} P(x) dx \right] \frac{5}{\pi} J_{1}(kx) dx
$$
\nWhen $p(x) = 0$ within $|x| < 1$, $\widetilde{P}(k) = \frac{1}{2} \pi 00 J_{1}(kx)$

$$
V(\gamma=0)=\frac{2}{E!} \le (a^{2}-x^{2})^{\frac{1}{2}}
$$

$$
\le_{\text{uy}}(\gamma=0, x>c)=\le \left[\frac{x}{(x^{2}-a^{2})^{\frac{1}{2}}}\right]
$$

for $\frac{y}{\sqrt{3}}$

$$
\leq \frac{y}{2a}
$$

for $\frac{y}{2a}$

$$
\leq \frac{z}{2a}
$$

We then can calculate the stress intersity factor by

$$
K_{I} = lim_{r\to0} \sqrt{2\pi r} S_{yy}(r, \theta=0) \stackrel{X=r+a}{\longrightarrow} lim_{r\to0} \sqrt{2\pi r} S_{\sqrt{1729}} \frac{r-a}{\sqrt{r}} = \sqrt{\pi a} S
$$

 $\mathscr{G}\nabla$

$$
K_{\underline{T}} = \lim_{r \to 0} \frac{E}{8} \sqrt{\frac{2\pi}{r}} \; \text{ly (r, 0=T)} \times 2 \stackrel{\text{X=0-T}}{\rightleftharpoons} \lim_{r \to 0} \frac{E}{4} \sqrt{\frac{2\pi}{r}} \cdot \frac{2}{E} \le \sqrt{24 \cdot r} \sqrt{r} = \sqrt{\pi} \sqrt{2}
$$

For this problem, the crack opening displacement can also be calculated by considering the following problem

. Using strain continuity conditions at the edge of the void, we can determine the strain" in the void, i.e.,

$$
\epsilon_{yy}^{\text{void}} = \epsilon_{yy}^{A/\text{void}} = \epsilon_{yy}^{A/\text{metric}} = \frac{26}{E} \frac{a}{b} \kappa^{\sqrt{(s/\text{side}} \cdot \frac{a}{x} \cdot x)} = \frac{a}{x} \kappa^{\frac{A/\text{void}}{x}} = \frac{a}{x} \kappa^{\frac{A/\text{void}}{x}} = \frac{a}{x} \kappa^{\frac{A/\text{void}}{x}} = \frac{a}{x} \kappa^{\frac{A/\text{void}}{x}} = \frac{a}{x} \kappa^{\frac{A}{x}} = 0
$$

Then the displacement field of the void is

$$
U_x = \epsilon_x^{\text{width}} \cdot x = \frac{26}{E} \frac{b}{a} x
$$
, $U_y = \epsilon_y^{\text{total}} \cdot y = \frac{26}{E} \frac{a}{b} y$

The vertical displacement "COD" on the surface
$$
(\frac{x}{a})^2 + (\frac{y}{b})^2 = 1
$$
, where
\n $y = \pm b \sqrt{1 - (\frac{x}{a})^2}$
\n \Rightarrow On the surface $U_y = \pm \frac{26}{E!} \sqrt{a^2 - x^2}$, $U_x = \frac{26}{E!} \frac{b}{a} \times$
\n \Rightarrow Now follow $b \rightarrow 0$ $U_y = \pm \frac{26}{E} \sqrt{a^2 - x^2}$, $U_x = 0$

$$
LOD(x) = \frac{46}{E} \sqrt{a^2 - x^2}
$$

$$
K_{\underline{T}} = \lim_{r \to 0} \frac{E}{8} \sqrt{\frac{2\pi}{r}} \quad \text{(OD (x) } \sum_{r \to 0}^{\infty} \frac{2}{r} \cdot \frac{1}{\sqrt{r}} \cdot \frac{2}{\sqrt{r}} \cdot \frac{2}{\sqrt{r}} \leq \sqrt{2a+r} \sqrt{r} = d\overline{T}a
$$

Then what about
$$
\frac{f^{\circ}}{\sqrt{\frac{f^{\circ}}{g^{\circ}}}}
$$
 $K_{\mathcal{I}}$?

$$
\frac{1}{\sqrt{1}} = \frac{1}{\sqrt{1 - \frac{1}{\sqrt{1
$$

This is nice for a simple problem, but what about more general nethods?