
 

Stress field near a crack top

The previous examples allows us to calculate or measure G directly How

can we compute G in general Solve the boundary valueproblem

For general elasticity problems we must solve the following problem
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First we'll consider the in plane loading modes
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To solve these equations we introduce Airy'sstress function such that
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Inserting Hooke's law gives
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We are interested these relations in polar coordinates
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Known to Michell solutions to biharmonicequation are
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Not all of these solution are useful For our problem we want to investigate

the field very
close to the cracktip This requires three things
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The solution allows discontinuity between 0 1 Contrast to the

continuity condition required in previous course
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The energy in a region near the crack tip should be finite to

be physical Uxffsjordrdoa.si Irdr finite

Therefore seek solution of the form
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These equations can be satisfied 2 ways
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Let's consider the most singular term we can write
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The strain energy density is
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The strain every in some finite region near the crack top is
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The Cartesian components can be written as
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KI and KI have dimensions of 6L and are called the mode I and

mode I stress intensity factors In general these constants need to bedetermined

based on the specific loading and geometry of the specimen
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Mode I stress field angular dependence
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The corresponding displacement fields are
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Now consider the p o term
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Also note that a uniaxial stress in the Rs direction can be applied and BCs
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Finally there exists another mode of crack loading called mode This

mode is a tearing mode and results from anti plane longitudinal shear

I Ite
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To solve the fields very close to the Mode I cracktip consider the follow

equations for longitudinal shear in isotropicelasticity

function of R1 R2

Equilibrium 2 1 3 0

Kinematics Gs G 23

Hooke'slaw 613 2443 623 215 a 27

In HW2 you will be in charge of finding the asymptotic KI field and any
F stresses



Therefore stress field near a crack tip can be expanded in the following

way
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This gives rise to the idea of K annulus in which the leading order

K terms are valid
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Within the region inside Rm the assumptions of linear elasticity

break down i e physically stresses do not no This is usually

manifested in some type of non linear material bevaviors such as

yielding for decades and peak stresses observed in the

first lecture for perfectly brittle materials
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In the region outside Rq higher order terms Tstresses and above

arising due to the introduction of a length scale from the specimen

geometry become important We are able to tell what is meant by r 1

1 requires no et
some length

Ran to min a L

hack
specimen dimension

length etc

The K G relationship

Energy release rate is all we asked for from the BVP Now we have known

KI KI KI as integration constants to bedetermined Beforegetting to

thispart let's determine the relationship
between G Eggs and Kustrenx
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Irwin performed the following crack closure integral to determine howmuch

energy is needed to close the cracktop by an increment of Sa forMode
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As we apply such traction the crack opening displacement CoD goesfrom
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to zero For any point along the closing region we should have a lineartraction

separation relation
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We will find similar results for Mode I and Mode and obtain

G III Twill proofthis in Hws
with J integral method

for isotropic linear elastic solids modes are decoupled Note that stresses

and displacements are linear in K but nonlinear in G Therefore K values

can be added for two superposed elasticity problems solutions butG cannot

be added in general
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One exception is the decoupling of Mode I I in isotropicelasticity For

anisotropic elasticity
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