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A B S T R A C T   

While classical wetting is well captured by the famous Young’s equation and classical bulge and 
blister models are readily available, there is limited understanding of a micro- or nano-scale 
droplet being covered by an ultrasoft elastic membrane. We call this phenomenon elastic wet-
ting to feature the interplay between the liquid’s surface tension and the membrane’s elastic 
deformation. Examples of elastic wetting include cell blebs and 2D material bubbles, where the 
membrane thickness ranges from microns to sub-nanometers. In this work, we study the equi-
librium of elastic wetting and solve for the profiles and the pressure-volume relations of the 
membrane-confined droplets. We show that in elastic wetting, the pressure across the membrane/ 
droplet interface can be described by a simple superposition of the Young-Laplace equation and 
the nonlinear membrane equation. Furthermore, nonlinear elasticity, geometric nonlinearity, and 
surface tension, together with membrane-substrate adhesion, interweave at the contact line, 
leading to rich membrane-confined droplet configurations. Finally, we examine the effect of 
substrate compliance on elastic wetting and find that the rigid substrate assumption approximates 
well for most of the existing experiments in the literature. Our results provide fundamental 
mechanistic insights into the various phenomena of elastic wetting as well as viable means to 
extract physical parameters including the bubble pressure and the interface energies.   

1. Introduction 

Wetting is an everyday phenomenon that refers to how a liquid droplet adheres to a solid surface (De Gennes et al., 2013). When 
surface tension dominates other forces, such as gravity, droplets on rigid substrates form in the shape of a spherical cap (except the 
limiting case of complete wetting where the liquid spreads out). The degree of wetting, i.e. wettability, is characterized by the contact 
angle of this liquid spherical cap, which is size-independent, described by Young’s equation (Young, 1805), and measured at the 
liquid-vapor-solid interface, which is called the contact line. Conventionally, contact angles are widely measured for the quantification 
of solid surface tensions (Kwok et al., 1998; Shimizu and Demarquette, 2000; Wu, 1971). In recent years, many new efforts focused on 
how the wettability (or the drop geometry) can be tuned. Examples include the design of the self-cleaning surfaces (Blossey, 2003) and 
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the control of nanoprintings (Fernández-Toledano et al., 2020). 
Recent experiments reported a slightly different wetting phenomenon where the droplets were confined by ultrasoft (i.e. ultrathin 

or ultracompliant or both) elastic membranes (see Fig. 1). It has been found in many different material systems with the membrane 
thickness ranging from microns to sub-nanometers. Examples include cellular blebs (i.e., the protrusion of cell membrane) (Fig. 1a) 
(Charras, 2008; Dimova and Lipowsky, 2012), epithelial domes on an elastomer (Fig. 1b) (Latorre et al., 2018), the blistering of 
thermosensitive hydrogel (Fig. 1c) (Shen et al., 2019), and the nano-bubbles at 2D material interfaces (Fig. 1d) (Sanchez et al., 2021, 
2018). We call this phenomenon elastic wetting because the elasticity of the membrane and the surface tension of the liquid together 
govern the wetting behavior. 

Elastic wetting involves liquid bulging an elastic membrane, which is reminiscent of classical blister tests – a popular setup to 
measure the elastic and adhesive properties of thin films (Dannenberg, 1961; Vlassak and Nix, 1992). A major difference is that the 
classical models of blister tests typically neglect the surface tension of the liquid (Gent and Lewandowski, 1987; Jensen, 1991; Xiang 
et al., 2005). As a consequence, blisters pressurized by either gas or liquid would lead to identical measures of material properties, such 
as the stiffness of the film and the film-substrate interface adhesion (Cao et al., 2015, 2014; Hohlfelder et al., 1996; Wang et al., 2013; 
Yue et al., 2012). 

As the film thickness and modulus decrease, the elastic energy drops to a level comparable with or even lower than the surface/ 
interface energies, which we refer to as elastic wetting (Fig. 1). In this scenario, the behavior of the blister would depend on the specific 

Table 1 
Experimentally relevant parameters and their nondimensionalization for elastic wetting. Substrate-supported droplets are widely 
observed to be confined by thin membranes of biological materials (Latorre et al., 2018), soft polymers (Gilcreest et al., 2004; Shen et al., 
2019; Xia et al., 2019), and 2D materials (Ghorbanfekr-Kalashami et al., 2017; Khestanova et al., 2016; Sanchez et al., 2018; Wang et al., 
2009). In this table, h is the central height of the blister, R0 is the base radius of the blister, h/R0 is hence the aspect ratio of the blister, t0 is 
the thickness of the membrane, μ is the shear modulus of the membrane, γlm is the energy density of the liquid-membrane interface, α 
=

γlm
μt0 

is the elasto-capillary number (see Eq. (25)), 
α

(h/R0)
2 is adopted to quantify the ratio of interface energy to elastic energy, μs is the 

shear modulus of the substrate, and 
μt0

μsR0 
is used for substrate rigidity evaluation.   

Biological materials Soft polymers 2D materials 

h (m) 10− 6 ∼ 10− 5  10− 4 ∼ 10− 3  10− 9 ∼ 10− 8  

R0 (m) ∼ 10− 5  ∼ 10− 3  ∼ 10− 7  

h /R0  0.1 ∼ 1  0.1 ∼ 1  0.02 ∼ 0.2  
t0 (m) ∼ 10− 6  ∼ 10− 5  ∼ 10− 9  

μ (Pa) ∼ 103  ∼ 105  ∼ 1011  

γlm (N /m) ∼ 10− 3  ∼ 10− 2  ∼ 10− 2  

α = γlm
μt0  

∼ 1  ∼ 10− 2  ∼ 10− 4  

α
(h/R0)

2  
1 ∼ 102  10− 2 ∼ 1  10− 3 ∼ 1  

μs (Pa) ∼ 103  ∼ 105  ∼ 1010  

μt0
μsR0  

∼ 10− 1  ∼ 10− 2  ∼ 10− 1   

Fig. 1. Examples of elastic wetting in experiments. (a) Scanning electron micrographs (SEM) of a blebbing filamin-deficient cell (Charras, 2008). (b) 
Epithelial domes generated on a soft elastomer substrate driven by transmural pressure (Latorre et al., 2018). (c) Blisters appear when 
temperature-sensitive hydrogels transit from swollen to unswollen phase (Shen et al., 2019). (d) Liquid nano-bubbles formed spontaneously when 
exfoliating a monolayer MoS2 on a SiO2 substrate (Sanchez et al., 2018). 
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type of liquid. Experimentally, it has been observed that the aspect ratio (i.e., height-to-radius ratio) of the droplet trapped between 
monolayer graphene and a graphite substrate could increase by ~40% as the droplet substance changed from ethanol to water 
(Ghorbanfekr-Kalashami et al., 2017). The aspect ratio of such elastically confined droplets has been proved to be also an indicator of 
the membrane-substrate adhesion (Dai et al., 2019; Sanchez et al., 2018). In this work, we focus on elastic wetting problems in which 
the droplet is supported by a substrate while confined by an ultrasoft elastic membrane. We note that there also exist a number of other 
interesting phenomena in the literature that may share similar physical ingredients of the elastic wetting, such as droplets being 
confined by an elastic capsule (Knoche et al., 2013), being supported by a suspended membrane (Davidovitch and Vella, 2018; Liu 
et al., 2020), and being sandwiched by elastic membranes (Schulman and Dalnoki-Veress, 2018). 

Despite increasing experimental observations of elastic wetting (Fig. 1), there is no complete theoretical framework to offer 
quantitative understanding and prediction. As a result, a number of fundamental questions remain unanswered: How does the 
membrane elasticity perturb the Young-Laplace equation built for sessile drops (i.e. classical wetting where droplets are supported by a 
substrate without membrane coverage)? How does the thin confining membrane modify the contact line previously described by the 
Young’s equation? When can the substrate be considered rigid? These natural questions would be more intriguing for the membrane- 
confined droplets with large aspect ratios, e.g. 0.2 (to be addressed in discussions), when both material and geometric nonlinearities set 
in. Blisters with large aspect ratios indeed have been widely observed in experiments. Table 1 summarizes the possible scales of pa-
rameters pertinent to elastic wetting, including the central height of the blister, h, the base radius of the blister, R0, and the corre-
sponding aspect ratio, h/R0. When droplets are confined under biological or soft polymer membranes, the maximum aspect ratio could 
reach ~1 (Charras, 2008; Latorre et al., 2018; Shen et al., 2019). For bubbles trapped on 2D material interfaces, the maximum aspect 
ratio approaches 0.2 when the interface adhesion is strong (Dai et al., 2020a; Ghorbanfekr-Kalashami et al., 2017; Khestanova et al., 
2016). Other parameters in Table 1 will be discussed later. 

To answer those fundamental questions and to achieve quantitative predictions, we present a fully-coupled theoretical framework 
for elastic wetting, which contains the large deformation, the material nonlinearity, the interface energies as well as various interfacial 
constraints. We show that in elastic wetting, the pressure difference across the membrane/droplet interface can be described by a 
simple superposition of the Young-Laplace equation and the nonlinear membrane equation. Dimensionless governing parameters 
emerge naturally during the derivation. We discover that the interplay of nonlinear elasticity, geometric nonlinearity, and interfacial 
tension, together with membrane-substrate adhesion, leads to surprisingly rich elastic wetting configurations. We demonstrate that 
this understanding could potentially be used to determine liquid-membrane interface energy and the membrane-substrate adhesion 
energy. 

This paper is arranged as follows. In Section 2, we establish the theoretical formulation for elastic wetting on a rigid substrate. In 
Section 3, we demonstrate an imaginary case of elastic wetting with a roller boundary that can successfully decay to the sessile drop 
scenario when the membrane stiffness vanishes. In Section 4, we unveil the quasi-static growth of a membrane-confined droplet with or 
without interfacial slippage by comparing three different boundary conditions: clamped, adhesive, and slippery boundaries. Section 5 
discusses the effects of substrate compliance and the applicability of our nonlinear theory of elastic wetting, followed by concluding 
remarks. 

2. Theoretical formulation 

This section provides the complete formulation for the boundary value problem of elastic wetting in the order of kinematics, 
equilibrium, constitutive law, and boundary conditions. 

2.1. Kinematics 

We consider an axisymmetric droplet trapped by an isotropic thin elastic membrane on a rigid substrate. The blistering process is 
modeled as a flat thin membrane with an initial thickness t0 being inflated by incompressible liquid. A coordinate system (er, ez) is 
introduced, with its origin located at the center of the undeformed membrane. The thin membrane assumption warrants the same 
profile of the droplet and the membrane. Fig. 2 offers the schematics for undeformed and deformed configurations. In the undeformed 
configuration (Fig. 2a), the membrane is assumed to be stress-free, and each material point can be labeled by (R,0). In the deformed 

Fig. 2. An axisymmetric droplet trapped between a rigid substrate (gray) and a thin elastic membrane (red): (a) the undeformed configuration, (b) 
the deformed configuration. 
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configuration (Fig. 2b), the blister profile can be specified by the radius r(R), the height z(R), and the thickness t(R). The edge of the 
blister, i.e. the location of the contact line, is specified by (r0,0), which corresponds to (R0,0) in the undeformed configuration, i.e., r0 
= r(R0). 

Let λr, λθ and λt denote the principal stretches of the membrane along the radial, hoop, and thickness directions, respectively, we 
have 

λr =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r′ 2
+ z′ 2

√

, λθ =
r
R
, λt =

t
t0
, (1)  

where ( )′ represents d( )/dR. As shown in Fig. 2b, ϕ(R) is the slope of the deformed blister profile at the location (r,z), satisfying 

sinϕ = −
z′

λr
, cosϕ =

r′

λr
. (2)  

Moreover, ϕ0 = ϕ(R0) is the contact angle of the droplet under the elastic confinement, which we call the elastic wetting contact angle. 
Assuming the membrane is incompressible (e.g. elastomers), i.e., λrλθλt = 1, the thickness of the deformed membrane is 

t =
t0

λrλθ
. (3)  

Elastic wetting with compressible membranes can be further investigated by considering the Poisson’s effect. However, it is expected to 
share very similar features with incompressible membranes in terms of blister profiles. The two situations should only differ quan-
titatively as illustrated in Sanchez et al.’s work that derived the aspect ratios of 2D material confined bubbles for different Poisson’s 
ratios (Sanchez et al., 2018). 

The area of the liquid-membrane interface in the deformed configuration is 

A1 =

∫R0

0

2πr
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r′ 2
+ z′ 2

√

dR, (4)  

the area of the liquid-substrate interface is 

A2 = πr2
0 =

∫R0

0

2πrr′ dR, (5)  

the area of the membrane-substrate interface is 

A3 =

∫∞

R0

2πrr′dR, (6)  

and the volume of the membrane-confined droplet is 

V =

∫R0

0

2πrr′ zdR. (7)  

2.2. Equilibrium equations 

Taking both elastic and interface energies into consideration, the total free energy of the elastic wetting problem can be written as 

Π = Um − ΔpV + γlmA1 + γlsA2 + γmsA3, (8)  

where Um is the strain energy due to the stretching of the membrane, Δp is the inner pressure of the droplet, γlm, γls and γms are the 
energy densities of the liquid-membrane interface, the liquid-substrate interface, and the membrane-substrate interface, respectively. 
We neglect the gravity of the liquid here due to the small-scale nature of the elastic wetting problem, though the gravity, as well as 
other external potentials (e.g., electrical potential) (Zhao and Suo, 2008; Zhu et al., 2010), could be readily added to Eq. (8) (Bico et al., 
2018; Roman and Bico, 2010). In this paper, all three interface energy densities are assumed to be constant, i.e., independent of the 
deformation of the materials, which is expected to be true for amorphous elastomers (Schulman et al., 2018). Some polymeric ma-
terials have time-dependent surface/interface tensions due to the remodeling of the polymer chains on surfaces (Yasuda et al., 1981). 
However, we do not consider such complexity here so that the simplified theoretical setting would allow for the exploration of some 
critical features of quasi-static elastic wetting systems. For crystalline membranes (e.g., 2D materials), although their strain-dependent 
surface energies were investigated by considering the Shuttleworth effect (Shuttleworth, 1950), such effect could still be neglected in 
our elastic wetting analysis because most blisters confined by 2D materials have relatively small aspect ratios (see Table 1) and hence 
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small strains in the membranes (<∼ 2%). 
Combining with Eq. (1), the membrane energy Um can be computed by 

Um =

∫R0

0

2πt0RW(r, r′

, z′

)dR +

∫∞

R0

2πt0RW(r, r′

)dR, (9)  

where W = W(λr, λθ) is the strain energy per unit volume in the undeformed configuration of the membrane. The second term on the 
right side of Eq. (9) accounts for the membrane energy outside of the membrane-confined droplet where z = z′

= 0. This term would 
be zero when the membrane is clamped along the contact line. However, for droplets confined by atomically smooth 2D materials (one 
of the cases that will be discussed in Section 4), the membrane could slide on the substrate with negligible shear resistance such that 
this term is no longer zero (Wang et al., 2017b). 

Substituting Eqs. (4)-(7) and (9) into Eq. (8), one can perform variations of the total free energy Π with respect to r, z, r′ , z′ . At 
equilibrium, the principle of minimum free energy is applied, i.e., 

δΠ = 0, (10)  

which leads to equilibrium equations 
⎧
⎪⎨

⎪⎩

κrNr + κθNθ + γlm(κr + κθ) + Δp = 0

dNr

dR
+

r′

(Nr − Nθ)

r
= 0

∀ 0 ≤ R < R0, (11)  

and 
⎧
⎪⎨

⎪⎩

z = 0

dNr

dR
+

r′

(Nr − Nθ)

r
= 0

∀ R ≥ R0. (12) 

We use κr and κθ to denote the principal curvatures in the directions of the principal stretches λr and λθ, respectively: 

κr =
r′ z′′ − r′′z′

(r′ 2
+ z′ 2

)
3/2, κθ =

z′

r(r′ 2
+ z′ 2

)
1/2. (13) 

Nr and Nθ are in-plane radial and hoop membrane tensions, respectively, which could be related to the in-plane Cauchy stresses of 
the membrane, σr and σθ, through 

Nr = tσr =
t0

λθ

∂W
∂λr

, Nθ = tσθ =
t0

λr

∂W
∂λθ

, (14)  

where σr = λr(∂W /∂λr) and σθ = λθ(∂W /∂λθ). 

2.3. Constitutive law 

The normal equilibrium in Eq. (11) indicates that the pressure difference across the liquid-membrane interface is a simple sum-
mation of pressures due to membrane tension (via a nonlinear membrane theory) and interfacial tension (via Young-Laplace equation). 
Unlike the uniform interfacial tension, the membrane tension varies spatially, depending on the local stretches as well as the 
constitutive law of the membrane, as delineated in Eq. (14). This motivates us to investigate the effect of different material behaviors 
on elastic wetting. To do so, both neo-Hookean and Gent material models are adopted in this paper. The neo-Hookean model (Rivlin 
and Taylor, 1948) provides a mathematically simple constitutive law for the nonlinear behavior of isotropic polymers such as elas-
tomers. The strain energy density is given by 

W =
μ
2

(

λ2
r + λ2

θ +
1

λ2
r λ2

θ
− 3

)

, (15)  

where μ is the shear modulus of the membrane. When the length of each polymer chain approaches its finite contour length, the 
following Gent model (Gent, 1996, 2005) captures a strain hardening phenomenon 

W = −
μ
2

Jmln
(

1 −
I1 − 3

Jm

)

, (16)  

where Jm is a material constant related to the limiting stretch of the membrane and I1 is the first invariant of the left Cauchy–Green 
deformation tensor. It is obvious that the neo-Hookean model is a special case of the Gent model when Jm → ∞. 
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2.4. Contact line (boundary conditions) 

Having shown that in the elastic wetting problem, the Young-Laplace equation is modified by the addition of a nonlinear membrane 
theory, we further demonstrate a plethora of complexities emerging at the contact line due to the existence of membrane. The 
boundary terms generated when proceeding Eq. (10) constitute boundary conditions for the elastic wetting problem. The details of the 
derivation are tedious and presented in Appendix A. Here, we discuss the general conclusions in brief. 

At the contact line of the blister r0 = r(R0), r(R) and z(R) are continuous, while r′ (R) and z′

(R) can be discontinuous. To describe 
different continuity conditions, we use (x)− and (x)+ to represent x evaluated on the left (inner) and right (outer) sides of R = R0, 
respectively. In addition, the initial radius of the contact line R0 could have nonzero variation, i.e., δR0 ∕= 0, when the membrane- 
substrate interfacial delamination propagates. Therefore, the variation of the evaluation of a function f(R) at R = R0 (i.e., δf(R0)) 
could be different from the evaluation of the variation of this function (i.e., (δf)(R0)). In particular, (δf)(R0) = δf(R0) − f ′

(R0)δR0. 
Based on the grounds, the boundary terms derived from Eq. (10) are expressed as (also see Appendix A for details) 

[
cosϕ−

(
N −

r + γlm
)
− Δpz0 +(γls − γms) − cosϕ+N+

r

]
r0δr0+

[
− r0

(
λ−r N −

r − λ+r N+
r

)
+R0t0(W − − W+)

]
δR0−

r0sinϕ−
(
N −

r + γlm
)
δz0 + [(cosϕNr + γms)r]|∞δr(∞) = 0, (17)  

where z0 = z(R0). If the substrate is considered as rigid and flat, one has z0 = δz0 = 0, ϕ+ = ϕ|∞ = 0, and ϕ− = ϕ0, which is defined as 
the elastic wetting contact angle, such that Eq. (17) can be simplified slightly, 

[
cosϕ0

(
N −

r + γlm
)
+(γls − γms) − N+

r

]
r0δr0+

[
− r0

(
λ−r N −

r − λ+r N+
r

)
+R0t0(W − − W+)

]
δR0+

[(Nr + γms)r]|∞δr(∞) = 0. (18) 

Besides, due to the axisymmetry, the membrane always satisfies 

r(0) = z
′

(0) = 0. (19) 

Equation (18), including both elasticity and interface energy terms, gives rise to abundant boundary conditions at the contact line. 
We first consider an ultrasoft membrane sticking to the substrate (without slippage) through adhesion. In this context, we may neglect 
the elasticity terms in Eq. (18) and have δr0 ∕= 0, δR0 = 0, δr(∞) = 0. It is then natural to define the contact angle in this elasticity-free 
case as the effective Young’s contact angle, 

cosϕY =

⎧
⎨

⎩

− 1, β ≤ − 1
β, β ∈ [ − 1, 1]
1, β ≥ 1

where β =
γms − γls

γlm
, (20)  

since it is analogous to Young’s equation. With this definition, we may understand the essence of the contact line in the elastic wetting 
problem by examining how the elastic wetting contact angle ϕ0 is evolved from the effective Young’s contact angle ϕY when the elastic 
force acts on the contact line. The evolution would not only depend on the membrane properties but also vary with the extent to which 
the substrate constrains the membrane. We note that though ϕY is always within [0,π], the term β is not limited to [ − 1,1]. Physically, 

Table 2 
Illustration and mathematical description of the sessile drop and the membrane-confined droplet with four different boundary conditions.   

Droplet Sliding Clamped Adhesive Slippery 

Schematic 

Contact angle cosϕY =
γs − γls

γl  
cosϕ0 =

γs − γls
N−

r + γlm  

Arbitrary cosϕ0 =

γms − γls + λ−r N−
r − t0W−

N−
r + γlm  

cosϕ0 =
γms − γls + N+

r
N−

r + γlm  

Variation 
constraint 

Prescribed volume R0 = const 
r0 ∕= const  

R0 = r0 = const  R0 = r0 ∕= const  R0 ∕= const 
r0 ∕= const  

Controlling 
numbers 

α =
γl

μt0
→ ∞; β =

γs − γls
γl  

α =
γlm
μt0

; β =
γs − γls

γlm  
α =

γlm
μt0  

α =
γlm
μt0

; β =
γms − γls

γlm  
α =

γlm
μt0

; β =
γms − γls

γlm   
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β ≥ 1 results in complete wetting whereas β ≤ − 1 corresponds to complete de-wetting at the interface. We will show that β is one of the 
two dimensionless groups that control the elastic wetting problem. 

Though more subtleties would appear when the substrate is deformable (see discussion in Section 5.1), an understanding based on 
rigid substrates should be a starting point to grasp the physics and mechanics of elastic wetting. In particular, we consider four types of 
constraints on the contact lines as summarized in Table 2 and discussed in the following subsections, i.e. Sections 2.4.1-2.4.4. 

2.4.1. Sliding boundary 
We begin by discussing an imaginary contact line, the sliding boundary (see Column 2 of Table 2), where a membrane with an 

initial radius of R0 is fixed vertically but free to slide laterally (i.e., not subjected to any horizontal constraints) at the contact line. The 
aim of considering this case of elastic wetting is to compare directly with a sessile drop (see Column 1 of Table 2). This comparison can 
be used to verify our theory by checking whether the elastic wetting degenerates to the classical wetting when membrane tension is 
trivial. More importantly, the comparison would provide simple, illustrative demonstrations of how the nonlinear elasticity modifies 
the classical Young’s equation regarding the contact angle as well as the Young-Laplace equation regarding the normal force balance 
for a sessile drop. Based on the mechanism elucidated here, the results of more realistic boundary conditions will be presented in later 
sections. 

Now, the R > R0 part of the membrane is removed. The terms in Eq. (18) involving R+
0 are set to be zero. In addition, the parameters 

defined in Eq. (20) need to be modified slightly by substituting γms with γs, i.e., 

β = cosϕY =
γs − γls

γlm
. (21) 

The edge of the membrane could slide freely along the lateral direction, which means 

δr0 ∕= 0, δR0 = 0, δr(∞) = 0. (22)  

Eq. (18) then becomes 
[
cosϕ0

(
N −

r + γlm
)
+(γls − γs)

]
r0δr0 = 0. (23)  

Eqs. (19) and (23) complete the boundary conditions required for solving the equilibrium Eq. (11) with a sliding boundary, namely 

r(0) = z(R0) = z
′

(0) = 0, cosϕ0 =
γs − γls

N −
r + γlm

. (24) 

Eq. (24) clearly suggests that the elastic wetting contact angle is a simple modification of the effective contact angle due to the 
membrane tension N−

r at the contact line. Since the membrane tension term in Eq. (24) would be normalized by the in-plane stiffness, 
two dimensionless groups arise naturally; they are β (or ϕY) in Eq. (21) and 

α =
γlm

μt0
, (25)  

which compares the liquid-membrane interface energy density with the membrane stiffness and may be thought of as the elasto- 
capillary number in the elastic wetting problem. Systems with larger α are more likely to be dominated by their interface properties, 
otherwise by their membrane properties. Typical values of α are provided in Table 1, indicating that blisters with ultrathin and ultra- 
compliant biological membranes are more sensitive to the elasto-capillary effects. 

2.4.2. Clamped boundary 
In reality, there often exists a constraint on the membrane at the contact line due to either membrane-substrate adhesion or 

externally applied fixture. When the constraint is much stronger than the membrane and interfacial tension, it can be modeled as the 
clamped boundary that has been frequently used in classical bulge tests. Under this condition, the horizontal constraint could be 
treated as infinite, and the edge of the membrane is fixed on the rigid substrate (see Column 3 of Table 2), leading to 

δr0 = δR0 = δr(∞) = 0. (26)  

As a result, Eq. (18) is automatically satisfied. Eqs. (19) and (26) present the boundary conditions for equilibrium Eq. (11) with 
clamped boundary, namely 

r(0) = z′

(0) = z(R0) = 0, r(R0) = R0. (27)  

In this case, only one controlling parameter appears in the normal equilibrium of Eq. (11), that is, the elasto-capillary number α. 

2.4.3. Adhesive boundary 
Instead of being infinite, the constraint along the contact line is usually limited by the adhesion between the membrane and the 

substrate. This is particularly true for liquid trapped between an adhesive interface aggregates into a blister (e.g., blisters formed when 
2D crystals transferred on a substrate as shown in Fig. 1d) or when interfacial liquid generates and initiates membrane-substrate 
delamination (e.g., blisters form on hydrogel surface as shown in Fig. 1c). Either case shall be in equilibrium, although the 
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limitation of the horizontal constraint comes from work of adhesion in the former and work of separation in the latter. We study this 
equilibrium using an adhesive boundary (see Column 4 of Table 2), assuming Mode 2 delamination (tangential displacement at the 
contact line) negligible. For an equilibrated membrane-confined droplet (i.e., membrane-substrate delamination has propagated), we 
have r0 = R0 but R0 is allowed to vary to minimize the total free energy or to achieve equilibrium. We therefore have 

δr0 = δR0 ∕= 0, δr(∞) = 0. (28)  

As the tangential displacement at the contact line is not allowed, trivial solutions can be obtained for the attached membrane (R ≥ R+
0 ). 

The terms in Eq. (18) involving R+
0 go to zero. With Eq. (28), Eq. (18) could be rewritten as 

[
cosϕ0

(
N −

r + γlm
)
+(γls − γms) − λ−r N −

r + t0W −
]
r0δr0 = 0. (29) 

Eqs. (19) and (29) then give rise to the boundary conditions for equilibrium Eq. (11) with adhesive boundary, namely 

r(0) = z′

(0) = z(R0) = 0, cosϕ0 =
γms − γls + λ−r N −

r − t0W −

N −
r + γlm

. (30)  

Like the case with the sliding boundary, this problem would depend on two dimensionless groups: α and β. The difference is that the β 
used for the adhesive boundary is defined by Eq. (20) while the β for the sliding boundary is defined by Eq. (21). 

2.4.4. Slippery boundary 
Finally, we consider an equilibrated droplet confined under an elastic membrane, where the membrane is allowed to slide laterally 

without shear resistance, which we call the slippery boundary (see Column 5 of Table 2). This boundary condition is motivated by two 
specific examples – 2D materials that feature an atomically smooth interface (Dai et al., 2018) or wet interfaces with negligible friction 
(Chopin et al., 2008). The bonded part is still considered as “attached” after horizontal slippage such that the interface energy remains 
unchanged. We will show that the “attached” membrane, in this case, is subjected to hoop compression due to the edge slippage, which 
is the differentiation from the sliding boundary. A more appropriate treatment is to release such compression via elastic instabilities. It 
warrants further investigations but is out of the focus of this work. Due to the slippage, we have r0 ∕= R0 and both of them are unknown, 
i.e., 

δr0, δR0 ∕= 0. (31) 

For the attached part (R ≥ R+
0 ), we have 

r
(
R+

0

)
= r0,Nr |∞ = − γms, (32)  

as the boundary conditions for equilibrium Eq. (12). In computations, since the slippage at far-field is very trivial, we adopted a fixed 
displacement condition at the outer edge of the membrane, say r(100R0) = 100R0, for simplicity. Now Eq. (18) gives two conditions at 
the contact line, 

cosϕ0 =
γms − γls + N+

r

N −
r + γlm

, (33)  

and 

N −
r λ−r − N+

r λ+r =
t0R0(W − − W+)

r0
. (34) 

Eqs. (33) and (34) can be used to solve for r0 and R0, with boundary conditions for Eq. (11), 

r(0) = z′

(0) = 0, r
(
R−

0

)
= r0, z

(
R−

0

)
= 0. (35)  

This case still relies on α and β. 
Based on the equilibrium equations and boundary conditions given above, we adopted the well-established shooting method to 

solve the elastic wetting problem (such as the ODE45 solver in Matlab), which is presented in detail in Appendix B. In calculations, we 
used all normalized parameters (see details in Appendix B). The central deflection is normalized by r0 as z(0)/r0 to present the aspect 
ratio of the deformed blister. The volume is normalized as V/V0 where V0 = 4

3 πR3
0. The inner pressure Δp is normalized to be ΔpR0 /μt0 

according to Eq. (B.5) or (B.6). Note that the normalized volume is a measure of the deformation of the thin membrane: a larger 
normalized volume suggests a larger deformation in the membrane. Besides, particular attention should be paid to adhesive and 
slippery boundaries because R0 develops as the delamination propagates. We thus let the notation R0 be the radius of the pre-existing 
delaminated zone and R1 be the radius of the delaminated zone after interfacial delamination (R1 ≥ R0) in the undeformed config-
uration (similarly, r0 and r1 in the deformed configuration). 

3. Comparison between elastic wetting and classical wetting 

In this section, we present numerical results for the elastic wetting problem with the imaginary sliding boundary (Column 2 of 
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Table 2), which could be understood via several concepts in the classical wetting problem. As a demonstration, in Fig. 3, we first show 
profiles of membrane-confined droplets with a hydrophilic and a hydrophobic effective Young’s contact angle ϕY , π /4 (solid curves) 
and 3π/4 (dash-dot curves), respectively, under a prescribed volume of V/V0 = 0.5 for various elasto-capillary numbers α. When α = 0, 
the profiles of these blisters, i.e. the two overlapping red curves, are controlled by the elasticity of the membrane, featuring an elastic 
wetting contact angle of π/2 regardless of the effective Young’s contact angle. As α increases, the elastic wetting contact angle starts to 
deviate from π/2 due to the effect of interfacial tension, till it approaches ϕY . 

We further plot the evolution of the elastic wetting contact angle ϕ0 and the aspect ratio z(0)/r0 vs. V/V0 under various effective 
Young’s contact angle ϕY and elasto-capillary number α in Fig. 4. As expected, ϕ0 → ϕY as α → ∞ regardless of the deformation as 
represented by the three horizontal lines in Fig. 4a. This result confirms that elastic wetting with a sliding boundary (Column 2 of 
Table 2) could indeed decay to classical wetting (Column 1 of Table 2) when the interfacial tension dominates over the membrane 
elasticity, i.e., γlm ≫ N−

r . Since the sessile drop in classical wetting exhibits a spherical cap shape, the aspect ratio should remain 
constant at a given ϕY regardless of the liquid volume, which is consistent with our numerical solutions when α → ∞ (see the three 
horizontal lines in Fig. 4b). In contrast, when the elastic force dominates, i.e. α → 0, all curves consolidate into the red horizontal line 
in Fig. 4a, i.e. ϕ0 ≡ π/2, indicating that all cases decay to the case of air bulging of a thin membrane (i.e., α = 0). Therefore, the 
corresponding aspect ratio-deformation relations are independent of ϕY , i.e., all the red curves in Fig. 4b collapse to the solid red curve. 
Also obvious in Fig. 4b, only when the deformation is relatively large (i.e., V/V0 ≥ 0.8 so that elasticity dominates), the blisters with α 

Fig. 4. The evolution of (a) the elastic wetting contact angle and (b) the aspect ratio of droplets confined by neo-Hookean membranes subjected to 
sliding boundary conditions for ϕY = π/4 (dash-dot-dot curves), π/2 (dashed curves) and 3π/4 (solid curves) with various α. The arrows indicate α 
decreases from ∞ to 0. In (a), all the dashed curves and red curves (i.e., when ϕY = π/2 or α = 0) collapse to the red solid line. In (b), all the red 
curves (i.e., when α = 0) collapse to the red solid curve. 

Fig. 3. Profiles of droplets confined by neo-Hookean membranes subjected to sliding boundary conditions. V/V0 = 0.5 is prescribed while the 
elasto-capillary numbers α is varying. Solid curves correspond to ϕY = π/4 and dash-dot curves for ϕY = 3π/4. The two red curves overlay. 
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= 0 could approach a hemispherical profile (i.e., aspect ratio approaching 1). In more general cases, when ϕY ∕= π/2 and α is nonzero 
and finite, the elastic wetting contact angle ϕ0 should be determined by both interfacial and elastic tensions and the latter could be 
tuned by the deformation of the thin membrane (see Fig. 4). 

The elastic wetting contact angle is sensitive to the droplet volume when V/V0 < 0.4, i.e. when elasticity cannot fully dominate over 
interfacial tension (see Fig. 4a). This could be understood through the investigation of how the elasticity (favoring π /2) modifies the 
Young’s equation (favoring ϕY), which is further illustrated by the force balance at the contact line in Table 3. We will focus our dis-
cussion on the case of ϕY < π/2 but the physical argument also applies to the case of ϕY > π/2. In this context, though numerical so-
lution allows ϕ0 < ϕY , we found that the stretches at the center of the membrane are only greater than 1 (i.e. the membrane is in tension) 
when ϕ0 >∼ ϕY . Therefore, we focus on numerical results in Fig. 4a with ϕ0 ∈ (ϕY , π /2). As a result, the corresponding aspect ratio- 
deformation curves in Fig. 4b do not emanate from the origin when α is nonzero and finite. Specifically, for systems with ϕ0 ∼ ϕY , the 
membrane tension is relatively small (λr, λθ ∼ 1), hence the tangential force is dominated by the liquid/membrane interfacial tension γlm 
(see the 1st row of Table 3). As the deformation increases, the membrane tension provides a modification to the classical Young’s 
equation (see Eq. (24)) or an additional force that lifts the ϕY towards π/2 (see the 2nd row of Table 3). This process is best illustrated by 
an animation of a numerically solved blister profile evolution with a sliding boundary in supplementary Video 1. For the specific cases of 
either ϕY = π/2 or α = 0, both the membrane tension and the liquid/membrane interfacial tension at the contact line are vertical, which 
satisfies the horizontal “force equilibrium” (see the 3rd row of Table 3). As a result, the elastic wetting contact angle remains to be π /2 
and all the dashed and red curves in Fig. 4a collapse to the red solid line. However, the dashed curves do not collapse in Fig. 4b as those in 
Fig. 4a. This is because the interfacial tension exerted at the contact line increases as α increases, which lifts the aspect ratio. 

Besides the blister profiles, the inner blister pressure is another important parameter, particularly for 2D-material-confined liquids 
with possible applications such as interface-confined high-pressure (e.g. 2 GPa) chemistry (Lim et al., 2014). We hence plot the 
normalized pressure vs. deformation in Fig. 5. Since the normal equilibrium is a simple summation of the membrane-tension induced 
pressure and the Young-Laplace pressure as given in the first equation of Eq. (11), a system with a larger elasto-capillary number would 
produce larger Young-Laplace pressure under the same level of deformation. Note that at large deformations, the nonlinear elasticity of 
the membrane could release the pressure, reminiscent of the snap-through instability while inflating a neo-Hookean balloon. The 

Table 3 
Illustrations of force balance at the contact line (blue dots) in elastic wetting with sliding boundaries.  
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results in Figs. 3-5 are based on the neo-Hookean constitutive law. Results based on the Gent constitutive law only show slight 
quantitative differences and therefore are presented in –Figs. C1-C3 in Appendix C. 

Our model and solution for the elastic wetting problem with a sliding boundary reveal the dramatically changed droplet profile and 
pressure from classical wetting, which is attributed to the elasticity-surface/interface tension interaction. Due to the limitations in 
accurately detecting the edge profiles at small scales, we realize that the aspect ratio (see Fig. 4b) may be a more practical geometric 
feature to measure in experiments, whereas the elastic wetting contact angle can be leveraged as a mathematical tool to elucidate the 
force balance at the contact line. Therefore, to unveil elastic wetting problems subjected to other contact/boundary conditions, in what 
follows, we present the numerical results in terms of the pressure, the profile, the elastic wetting contact angle, and the aspect ratio of 
the soft membrane-confined droplet. 

Fig. 6. Solutions to elastic wetting under clamped boundary with various elasto-capillary numbers α and different membrane constitutive laws – 
neo-Hookean (solid curves) vs. Gent (dashed curves). (a) Normalized pressure-deformation relation. (b) Blister profiles at given α = 2 and V /V0 =

4. (c) Elastic wetting contact angle-deformation relation. (d) Aspect ratio-deformation relation. 

Fig. 5. Normalized pressure-deformation relations for elastic wetting with neo-Hookean membranes and sliding boundaries under various elasto- 
capillary numbers α. 
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4. Solutions to elastic wetting under different boundary conditions 

In this section, we consider elastic wetting with more realistic boundary conditions listed in Table 2. We first assign an infinite 
constraint, i.e. a clamped boundary (see Column 3 of Table 2). We then consider finite horizontal constraint due to the finite 
membrane-substrate adhesion, which leads to edge delamination without slippage (see Column 4 of Table 2) and with slippage (see 
Column 5 of Table 2). We note that there may exist an initially delaminated area in experiments (Benet and Vernerey, 2019; Shen et al., 
2019). After the membrane is further inflated, the problem is first under clamped boundary and then subjected to edge delamination 
when the membrane tension is substantial enough to cause the membrane-substrate interface failure (Benet and Vernerey, 2019). 

4.1. No edge delamination (clamped boundary) 

Of interest is the process of the quasi-static inflation of liquids at the membrane-substrate interface (a.k.a. blistering or bulging) 
with pre-existing circular delamination of radius R0. Before further delamination occurs, the system can be considered as elastic 
wetting with a clamped boundary, as illustrated by Column 3 of Table 2. Classical bulging solutions considered material and geometric 
nonlinearity but not interfacial tension (Wang et al., 2017a; Xie et al., 2016). Taking interfacial tension into consideration, we 
numerically solve the boundary value problem defined in Section 2.4.2. 

Fig. 6a plots the normalized pressure-deformation relation of different α based on two different material laws. Similar to the sliding 
boundary discussed in Section 3, a higher elasto-capillary number yields higher pressure. Unlike the sliding boundary, the clamped 
boundary shows a discernable deviation between the two material laws at large deformations (i.e., V/V0 > 1). Specifically, as the 
liquid volume increases, the pressure first increases dramatically and then decreases gradually for a neo-Hookean membrane, whereas 
an N-shaped pressure-deformation curve is observed for a Gent membrane. The difference is attributed to the strengthening phe-
nomena included in the Gent model when the applied stretch approaches the limiting stretch of the polymer chains, i.e., I1 − 3 → Jm (Jm 
= 100 in our computation). Consequently, given the same volume, the droplet confined by a Gent membrane is predicted to exhibit 

Fig. 7. Normalized (a) free energy-deformation and (b) pressure-deformation relations for elastic wetting with a neoHookean membrane and an 
adhesive boundary when α = 0.5 and β = − 5 are given. The black and red curves represent configurations without and with edge delamination, 
respectively. The solid curves represent the actual evolution pathways of free energy/pressure. The blue marker at the intersection of the black and 
red curves highlights the critical volume-to-delaminate. (c) The growth of the blister profile under the adhesive boundary. The black and red parts 
represent the sections of the membrane that are initially detached from or attached to the substrate before any liquid injection. In other words, the 
red parts are delaminated membrane due to the increased liquid volume. For the two blister profiles labeled with “before delamination”, their 
prescribed volumes are V/V0 = 0.3 and 0.9. 
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smaller aspect ratios than that under a neo-Hookean membrane of the same shear modulus (see Fig. 6b). In fact, with the clamped 
boundary, both the elastic wetting contact angle and the aspect ratio can be tuned by the liquid volume, as shown in Figs. 6c and 6d. It 
is worth noting that the elastic wetting contact angle and the aspect ratio of the droplet confined by neo-Hookean membranes are 
insensitive to the elasto-capillary number α whereas the Gent membrane leads to slightly decreasing elastic wetting contact angle and 
increasing aspect ratio with increasing α, especially at large deformation. We again attribute such difference to the strengthening effect 
of the Gent model at large deformation. The quasi-static growth process of a droplet confined by a neo-Hookean membrane with a 
clamped boundary can be visualized through supplementary Video 2. 

4.2. Edge delamination without slippage (adhesive boundary) 

4.2.1. Solutions to edge delamination without slippage 
The assumption of clamped boundary breaks down when edge delamination occurs as the base radius of the blister starts to vary. 

We first consider an adhesive boundary that allows normal separation but prohibits horizontal slippage at the membrane-substrate 
interface. Hence the undelaminated part of the membrane is stress-free. The criterion of edge delamination is that the elastic wet-
ting contact angle satisfies the boundary conditions expressed in Eq. (30) (also included in Column 4 of Table 2). As we discussed in 
Section 2.4.3, this criterion depends on two dimensionless groups: α (i.e., γlm/μt0) and β (i.e., (γms − γls)/γlm). The numerical solutions 
to the adhesive boundary are plotted in Figs. 7 through 9. The critical volume-to-delaminate can be determined through the com-
parison of the total free energy of undelaminated (black) and delaminated (red) configurations, as plotted in Fig. 7a, where α = 0.5 and 
β = − 5. The intersection is marked by a blue square, where the criterion is first satisfied or beyond which edge delamination occurs. 
Fig. 7b plots the normalized inner pressure before (black) and after (red) edge delamination. Hence the actual pressure should evolve 
along the black curve at small volumes and then along the red curve beyond the blue marker, i.e. along the solid curves in Fig. 7b. 

Red curves in Fig. 7 are obtained by considering that the edge of the blister has delaminated to enlarge the radius from r0 (or R0 in 
the undeformed configuration) to r1 (or R1 in the undeformed configuration), where r0 = R0 and r1 = R1 due to prohibited edge 
slippage and R1 ≥ R0. To calculate the pressure and profile of the delaminated blister, we may consider the elastic wetting problem 
with a clamped boundary but using parameters V/V1 (where V1 = 4πR3

1/3), ΔpR1/μt0, z/r1 and ϕ, all normalized based on R1. The 
advantage of this normalization is that the critical pressure or volume relies only on α and β and is independent of any lengths, 
including the radius of the pre-existing delamination zone. In other words, (V/V1)c = (V/V0)c and (ΔpR1/μt0)c = (ΔpR0/μt0)c for any 
R1 ≥ R0. However, it is still convenient to plot the delaminated pressure-deformation relation by the coordinates based on R0 (e.g., 
ΔpR0/μt0 and V/V0). We hence leverage the following relation to cancel out the radius R1: 

V
(

Δp
μt0

)3

= C(α, β). (36) 

Eq. (36) gives rise to the red curve in Fig. 7b, where the constant C(α, β) is determined by the fact that Eq. (36) has to pass the blue 
marker (i.e., the critical delamination point). As long as this criterion is satisfied, the pressure-deformation curve would switch from 
the black to the red curve that denotes equilibrated states. Similar relations for Gent membranes are shown in Fig. C4 in Appendix C, 
where we find that the edge delamination initiates earlier than the droplet confined by the neo-Hookean membrane due to the 
strengthening effect of the Gent membrane. 

The profiles of the blister before and after delamination are plotted in Fig. 7c. Before edge delamination, i.e. V /V0 < (V/V0)c, the 
membrane-confined droplet behaves like a clamped blister and we plot two of them with prescribed volumes of V /V0 = 0.3 and 0.9 as 
labeled in Fig. 7c. Once V/V0 ≥ (V/V0)c, edge delamination kicks in. The new system could be thought of as having a pre-existing 

delamination zone of radius R1. Its deformation level satisfies V/V1 = (V/V1)c and its normalized profile z
(

r
R1

)

/R1 is identical to 

the profile z
(

r
R0

)

/R0 at the critical moment defined by V/V0 = (V/V0)c. In other words, by doing normalization, all numerical so-

lutions for elastic wetting after edge delamination are identical to the numerical solution for elastic wetting at the critical moment. It is 
useful to plot the profile of a delaminated droplet with R1 along with the normalization based on R0, which could be readily achieved 
by scaling the profile of the critical moment through r

R0
→ R1

R0
r

R0 
and z

R0
→ R1

R0
z

R0
. In Fig. 7c, it is clear that the profiles after delamination 

are self-similar as they were obtained by simply scaling the profile at the critical moment. Such volume-independent self-similarity has 
been widely found in 2D-material-confined droplets in the literature (Khestanova et al., 2016; Sanchez et al., 2018). The growing 
process of a neo-Hookean membrane confined droplet under the adhesive boundary is visualized through supplementary Video 3. 

4.2.2. A means to determine (α, β) and membrane-substrate adhesion energy Γ 
Since the solutions V/V1, ΔpR1/μt0, z(0)/r1 and ϕ0 are only dependent on α and β in elastic wetting with adhesive boundary, we 

provide the contour plots for these dependencies in Fig. 8 for droplets under neo-Hookean membranes. Of particular interest is the 
discovery of the blank spaces in these contour plots, where numerical methods failed to find solutions. The left-side blank space 
features large α and small β. The physical interpretation is that the membrane-substrate adhesion is sufficiently strong to prevent 
interface delaminating no matter how much the volume inflates. We will show later in Eq. (38) that the membrane-substrate interface 
adhesion energy is related to α(1 − β). We note that the left-side blank space disappears in the contour plots for droplets confined by 
Gent membranes (see Fig. C5 in Appendix C), which suggests the interface could delaminate eventually due to the strengthening of the 
Gent membrane. The right-side blank space exists for both neo-Hookean and Gent membranes and could be captured simply by β ≥ 1. β 
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= 1 is equivalent to S = γms − γls − γlm = 0, where S is called the elastic wetting spreading number, reminiscent of the spreading 
number for classical wetting (Quéré et al., 1990). When S ≥ 0 or β ≥ 1, the interface is in complete wetting (ϕ0 = 0) so that liquid 
spreads along the interface without bulging the membrane. This scenario has been observed in 2D material systems, where the 
membrane and the substrate are relatively hydrophilic, and the membrane-substrate adhesion is relatively weak (Temmen et al., 
2014). 

While the membrane elastic properties are relatively accessible, the interface energies are notoriously challenging to detect 
experimentally (Calvimontes, 2017). It hence gives rise to the challenge of determining the controlling parameter group (α, β) in 
elastic wetting problems. Our contour plots suggest that for a regular elastic wetting system with ϕo ∈ (0,π), α and β could be extracted 

Fig. 8. Contour plots of (a) the normalized pressure, (b) the normalized volume, (c) the elastic wetting contact angle, and (d) the aspect ratio in 
α ∼ β parametric space for elastic wetting with neo-Hookean membranes and adhesive boundaries. 

Fig. 9. Contour curves for z(0)/r1 = 2 and ΔpR1/μt0 = 10 in α ∼ β parametric space for elastic wetting with a neo-Hookean membrane and an 
adhesive boundary. 
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once the droplet pressure and one of the three geometrical parameters in Fig. 8 could be measured. It is theoretically possible to extract 
(α, β) purely through two of the three geometrical parameters, V/V1, z(0)/r1 and ϕ0. But the error could be excessive since these 
geometrical parameters share a very similar dependency on α and β (see Fig. 8). We thus advocate exploiting the combination of 
pressure and one of the geometrical parameters, such as the aspect ratio. For example, for a droplet covered by a neo-Hookean 
membrane with z(0)/r1 = 2 and ΔpR1/μt0 = 10, one can plot corresponding contour curves using Figs. 8a and 8d, and the inter-
sect yields the α and β of the system (Fig. 9). While the aspect ratio is often easy to detect in experiments, directly measuring the 
pressure in micro- or nano- blisters is almost impossible. We will propose an approach to estimate the pressure in Section 5.1 by 
observing the substrate deformation if the substrate were not completely rigid. The same methodology could be adopted to find out 
(α, β) for droplets confined by Gent membranes (see Fig. C6 in Appendix C). 

Knowing α and β of the elastic wetting system with adhesive boundary can shed light on the membrane-substrate adhesion energy 
Γ. Specifically, according to the definition, 

Γ = γs + γm − γms, (37)  

where γs and γm are the surface energy densities of the substrate and the membrane, respectively. We may apply Young’s equation such 
that Eq. (37) yields 

Γ
μt0

= α(1 − β) +
γl

μt0
(cosϕm + cosϕs), (38)  

where γl is the surface tension of the interfacial liquid, and ϕm and ϕs are Young’s contact angles of the interfacial liquid on the 
membrane and the substrate, respectively. Therefore, the membrane-substrate adhesion energy can be estimated once the membrane 
stiffness (i.e., μt0) and surface parameters (including α, β, γl,ϕm, and ϕs) in the system are known. The extracted Γ could be either work 
of adhesion or work of separation, depending on whether the droplet is formed via a process of the membrane healing with or 
separating from the substrate. 

Fig. 10. Normalized (a) free energy-deformation and (b) pressure-deformation relations for elastic wetting with a neo-Hookean membrane and a 
slippery boundary when α = 0.5 and β = − 5 are given. The black and red curves represent configurations without and with edge delamination, 
respectively. (c) The growth of the blister profile under the slippery boundary. The black and red parts represent the sections of the membrane that 
are initially detached from or attached to the substrate before any liquid injection. For the two blister profiles before delamination, their prescribed 
volumes are V/V0 = 0.1 and 0.2. (d) Normalized hoop tension in the membrane with edge delamination of R1 = R0, 1.5R0, and 2R0. 
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4.3. Edge delamination with slippage (slippery boundary) 

Finally, we allow the membrane to delaminate with free slippage against the substrate so that the membrane in contact with the 
substrate is stressed. The main difference between edge delamination without and with slippage is that r1 ∕= R1 in the later. The criteria 
for delamination with slippage should include the force balance at the contact, i.e. Eq. (33), plus an equation, i.e. Eq. (34), to relate r1 

to R1. The physical concepts discussed in Section 4.2.1 such as the self-similar shape and the invariant V
(

Δp
μt0

)3
are still applicable to this 

case. 
We plot the normalized free energy-deformation and normalized pressure-deformation relations before and after edge delami-

nation in Figs. 10a and 10b, respectively. The blue marker locates the onset of delamination when α = 0.5 and β = − 5 are given. 
Compared to the position of the blue marker shown in Fig. 7a or Fig. 7b, at the same α and β, the edge delamination occurs much earlier 
in a membrane-confined droplet with slippery boundary because the membrane-substrate interface is relatively weak compared with 
the adhesive boundary. Fig. 10c plots the evolution of the blister profile. After the onset of delamination, the profiles are again ob-
tained through scaling the profile at the onset of delamination. Notably, the radius of the contact line first shrinks at the early stage of 
the bulging, reminiscent of the experimental observation of a flat membrane suddenly wrapped around a droplet due to surface tension 
(Antkowiak et al., 2011; de Langre et al., 2010; Paulsen et al., 2015). The wrapping and delamination process under slippery boundary 
can be visualized in supplementary Video 4. Figure 10d exhibits the distribution of normalized hoop tractions in the membrane with 
edge delamination R1 = R0, 1.5R0, and 2R0. It is clear that all the attached region and part of the bulged region of the membrane are 
subjected to hoop compression. Considerations of elastic instabilities that release such compression would be necessary (Chopin et al., 
2008; Dai and Lu, 2021; Dai et al., 2020b; Huang et al., 2007), but are out of the scope of this paper. Besides, similar results for elastic 
wetting with a Gent membrane and a slippery boundary are offered in Fig. C7 in Appendix C. 

We have provided the full theoretical solutions to elastic wetting under three realistic boundary conditions in this section. We find 
that before edge delamination occurs, the system with adhesive boundary first behaves like a clamped bulge test where the interfacial 
tension and the membrane tension together balance against the inner pressure through curvature, while the contact line of the system 
with slippery boundary first moves inward such that the membrane appears to wrap around the interfacial droplet. Once the bulging 
volume reaches the critical volume-to-delaminate or the contact angle reaches the critical value as given in Eq. (30) for non-slipping 
interface and Eq. (33) for slipping interface, edge delamination occurs, and the blister grows in a self-similar manner with constant 
contact angle afterward. Everything else the same, the slippery boundary greatly reduces the critical volume-to-delaminate compared 
with the adhesive boundary due to a weaker membrane-substrate interface. Once the membrane slides inward under slippery 
boundary, hoop compression develops in the membrane, which would cause instabilities such as radial buckles but is beyond the scope 
of this work. 

5. Discussions 

5.1. Effects of substrate compliance 

Having shown the complexities in pressure and geometry when the droplet is confined between an elastic membrane and a rigid 
substrate, we discuss the applicability of our theory when the substrate is not perfectly rigid. 

To reveal the effects of substrate stiffness, we start with a simple scaling analysis for the elastic wetting problem on a soft substrate 
subjected to a clamped boundary. Based on equilibrium Eq. (11), the inner pressure can be expressed as Δp ∼ (N + γ)κ. Consider the 
membrane strain ε ∼ (h/R0)

2, the membrane tension N ∼ μt0ε ∼ μt0(h/R0)
2 and the curvature κ ∼ h/R2

0, we have Δp ∼ μt0h3 /R4
0 + γh 

/R2
0. Furthermore, the central deflection of the substrate, i.e. δs, due to the inner pressure is less than ΔpR0/μs ∼

μt0
μs
(h3 /R3

0 +αh /R0)

(Lubarda, 2013). Consequently, the ratio of the central deflection of the substrate to the central deflection of the membrane can be 
expressed as δs/h <∼

μt0
μsR0

(h2 /R2
0 + α). In most experiments, h/R0 ∼ O (1) and α <∼ 1 (see the 3rd and the 7th rows of Table 1). 

Therefore, we suggest that the effect of substrate compliance on the droplet configuration may be negligible when μt0 /(μsR0) ≪ 1. 
Considering the fact that t0/R0 is extremely small for ultrathin membrane systems, our theoretical analysis based on the rigid substrate 
would stay applicable as long as the membrane stiffness is not orders of magnitude larger than that of the substrate. This also brings an 
outstanding opportunity to detect the elusive inner pressure of membrane-confined droplets via the substrate deformation (Latorre 
et al., 2018), which should be sufficiently large to allow for accurate experimental measurement yet sufficiently small (compared with 
the membrane deflection) to render our rigid substrate assumption valid. Such a conclusion essentially makes use of the nearly linear 
elasticity of an elastomeric substrate at small deformation and the highly nonlinear elasticity of a thin membrane at large deformation. 

We quantitatively verify the rigid substrate criterion of μt0/(μsR0) ≪ 1 by carrying out finite element modeling (FEM) in Abaqus. 
The elasto-capillary effect is simulated by using the UEL subroutine created by Jagota and colleagues (Jagota et al., 1998; Style et al., 
2017; Xu et al., 2014), where a two-node user-defined surface element was developed and applied in various topics involving surface 
tensions. In our simulations, both the thin membrane and the substrate were modeled as incompressible neo-Hookean materials. The 
substrate was meshed using 2-D axisymmetric elements CAX4H. We chose a domain Ω = {(R,Z)|0 ≤ R ≤ 10R0, − 10R0 ≤ Z ≤ 0}
whose lateral size and depth were both ten times of the initial blister radius, i.e. 10R0, such that the substrate could be treated as a 
half-space. We considered small substrate-liquid and substrate-membrane interface energies and large membrane-liquid interface 
energies such that the substrate was susceptible to deformation under a given blister height. Specifically, γls = γms = 0 and γlm /μt0 = 1 
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Fig. 12. FEM solutions of elastic wetting on soft substrates with various μt0/(μsR0) = 0.1, 0.2, and 1 along the verticle axis and various aspect ratios 
z(0)
R0

= 0.5, 1.0, 1.5, and 2.0 along the horizontal axis. 

Fig. 11. FEM results of the normalized pressure against the normalized central displacement of the neo-Hookean membrane with a clamped 
boundary on soft substrates where μt0/(μsR0) = 0, 0.1, 0.2, 1.0, γls = γms = 0 and γlm/μt0 = 1. The result of μt0/(μsR0) = 0 (the black curve) 
represents the elastic wetting with a clamped boundary on a rigid substrate. 
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were assumed. If the rigid substrate criterion was verified under such parameters, the criterion would be applicable for more general 
cases with γls, γms > 0 and γlm/μt0 < 1. 

Fig. 11 plots the FEM results of the normalized pressure (ΔpR0/μt0) against the normalized central displacement of the membrane 
on a soft substrate. These results were produced by varying μt0/(μsR0) from 0 to 1. The black curve in Fig. 11 corresponds to μt0 /(μsR0)

= 0, which represents elastic wetting on a rigid substrate. Clearly, the substrate effect on the pressure-deformation relation weakens as 
μt0/(μsR0) decreases. Particularly, when μt0/(μsR0) < 0.1, the deviation in pressure between the soft and the rigid substrate analysis is 
within 6.5%. This agrees with the scaling prediction of μt0/(μsR0) ≪ 1. Fig. 12 displays the configurations of elastic wetting with μt0 
/(μsR0) = 0.1, 0.2, and 1 under various aspect ratios, further indicating that the substrate deflection becomes negligible compared 
with the membrane deflection when μt0/(μsR0) <∼ 0.1. 

5.2. Signatures of nonlinear elastic wetting 

In this section, we discuss the conditions under which the elastic wetting phenomena presented in this work are too significant to 
neglect.  

• Interface energy. In Section 5.1, we have derived that the blister pressure scales as Δp ∼ μt0h3/R4
0 + γh/R2

0. Therefore, the effect of 

interfacial tension would be nontrivial when γ
μt0 >∼

(
h

R0

)2
, suggesting that systems with ultrathin and ultrasoft membranes are 

more likely to fall in the elastic wetting category. Such effect is especially significant in several small-scale blisters trapped by 
biological and soft polymer membranes (see the 8th row of Table 1).  

• Substrate stiffness. In Section 5.1, we have derived a scaling law and verified numerically that the rigid substrate assumption could 
provide a good approximation when μt0

μsR0
<∼ 0.1. This condition is not that limited as most blisters have t0 ≪ R0. Moreover, most 

small-scale elastic wetting systems observed in experiments satisfy this criterion (see the 10th row of Table 1).  
• Nonlinear elasticity. Our analysis is based on both nonlinear elastic materials and nonlinear geometry, which we claimed to be 

significant when the aspect ratio of the blister is greater than 0.2. To justify, we compare our results with the following two typical 
membrane theories: the nonlinear membrane theory (without surface tension) and the Föppl-Hencky membrane theory (Hencky, 
1915). 

The conventional nonlinear membrane theory without surface tension is simply obtained by neglecting the interface energy term in 
Eq. (11) (i.e., setting γlm = 0 in Eq. (11)). The Föppl-Hencky membrane theory considers a small in-plane deformation but a relatively 
large deflection for the bulged membrane (also without surface tension), as well as a linear constitutive law. Therefore, the radial and 
hoop membrane tensions are expressed as 

Nr =
Et0

1 − ν2 (ϵr + νϵθ) =
Et0

1 − ν2

[
dur

dr
+

1
2

(
dz
dr

)2

+ ν ur

r

]

, (39)  

and 

Nθ =
Et0

1 − ν2 (ϵθ + νϵr) =
Et0

1 − ν2

[
ur

r
+ ν dur

dr
+

ν
2

(
dz
dr

)2]

, (40)  

respectively. Here E is the Young’s modulus, ν is the Poisson’s ratio, ϵr =
dur
dr +

1
2

(
dz
dr

)2 
and ϵθ = ur

r are the two principle in-plane strain 

components, ur and z are displacements in the er and ez direction, respectively. Notably, the shear modulus of the membrane is defined 
as μ = E

2(1+ν) where ν = 0.5 for the incompressible membrane. 
The out-of-plane and in-plane force equilibriums based on the Föppl-Hencky membrane theory are derived as (Wang et al., 2013) 

⎧
⎪⎪⎨

⎪⎪⎩

Nr
d2z
dr2 + Nθ

1
r

dz
dr

+ Δp = 0,

dNr

dr
+

Nr − Nθ

r
= 0,

(41)  

which can also be obtained through linearizing the constitutive law and the curvature in the nonlinear membrane theory, i.e. Eq. (11). 
For simplification, we adopt a clamped boundary condition in calculations. Such a boundary condition for the nonlinear membrane 

theory is shown in Section 2.4.2. For the Föppl-Hencky membrane theory, we consider 

ur(0) =
dz(0)

dr
= ur(R0) = z(R0) = 0. (42) 

Eqs. (39)-(42) can be solved numerically by applying the shooting method as well. For comparison, we adopt the incompressible 
Gent model with Jm = 100, 200, and ∞, where Jm → ∞ denotes the incompressible neo-Hookean material in the nonlinear membrane 
theory. 
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Fig. 13a plots the normalized pressure-aspect ratio relations comparing the three theories and Fig. 13b offers the blown-up view of 
the red boxed region in Fig. 13a. We can see that the Föppl-Hencky membrane theory starts to deviate from the nonlinear membrane 
theory without surface tension (i.e., α = 0) at the aspect ratio around 0.2. We, therefore, recommend that nonlinear elasticity and 
geometric nonlinearity should be considered when the aspect ratio of the blister is greater than 0.2. Moreover, as shown in Fig. 13, once 
surface tension is considered, the pressure-deformation relation is markedly affected, leading to a much higher pressure firstly, and 
then a more rapid pressure drop, as deformation increases. Besides, for elastic wetting with Gent membranes (i.e., Jm = 100, 200) and 
clamped boundaries, the N-shaped pressure-deformation relation is more visible in Fig. 13a than in Fig. 6a when the aspect ratio 
instead of the volume is adopted by the former to quantify the deformation. 

Conclusions 

In this paper, we model and solve the elastic wetting problems in which a droplet is confined between a soft elastic membrane and a 
rigid substrate at small scales such that the interplay between the interface energy and the elastic energy enriches the problem. We find 
that the pressure acting on the membrane-confined droplet comes from a superposition of interfacial tension (described by Young- 
Laplace equation) and membrane tension (controlled by nonlinear membrane theory). Though the pressure remains uniform, the 
membrane tension varies spatially, modifying the droplet from being in a perfectly spherical cap shape. The membrane-substrate 
interaction, together with the elastic and surface tensions, leads to a variety of scenarios at the contact line or the blister boundary. 

This work tackles four typical boundary conditions – sliding, clamped, adhesive, and slippery boundaries. Our derivation yields two 
dimensionless controlling parameters in this system: the elasto-capillary number that compares the membrane-liquid surface tension 
with the membrane stiffness, and the effective contact angle that decays to Young’s contact angle when the membrane elasticity is 
negligible. The essence of these complex behaviors at the contact line is explained by how the membrane tension and the elasto- 
capillary number modify the effective contact angle to the elastic wetting contact angle. In the adhesive case (more likely to occur 
in experiments), we discover that the elastic wetting contact angle is a stretch-independent constant. We therefore provide contour 
plots for its dependency on the two controlling parameters, which further leads to a means to experimentally measure the interface 
energies. We suggest that elastic wetting problems may follow the theoretical framework presented here when the elasto-capillary 
number is comparable with the square of the aspect ratio of the blister. We discover that the rigid substrate assumption could be 
satisfied when the membrane deflection is much larger than the substrate deflection, which is equivalent to μt0/(μsR0) <∼ 0.1. We 
advocate that nonlinear elasticity and geometric nonlinearity should be considered, especially when the aspect ratio is greater than 
0.2. Table 1 exhibits experimentally practical parameters for the elastic wetting problems associated with biological materials, soft 
polymers and 2D materials, where our theory is very relevant. Our theoretical framework for elastic wetting not only enables the 
prediction of the blister profile and the Δp − V relation but also provides means to experimentally extract the inner pressure as well as 
the interface and adhesion energies. 
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Fig. 13. (a) Normalized pressure-aspect ratio curves obtained based on our elastic wetting theory (dash-dot curves) and two conventional mem-
brane theories without considering surface tension: the nonlinear membrane theory (solid curves) and the Föppl-Hencky membrane theory (dashed 
curves). (b) Zoomed-in view of the red-boxed region in (a). 
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Appendix A. Derivation of equilibrium equations and boundary conditions through energy minimization 

In this section, we illustrate the derivation of the energy minimization procedure based on the calculus of variations. Firstly, 
substituting Eqs. (4)-(7) and (9) into Eq. (8), one obtains 

Π =

∫R0

0

2πt0RW(r, r′

, z′

)dR +

∫∞

R0

2πt0RW(r, r′

)dR − Δp
∫R0

0

2πrr′ zdR + γlm

∫R0

0

2πr
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r′ 2
+ z′ 2

√

dR + γls

∫R0

0

2πrr′ dR + γms

∫∞

R0

2πrr′ dR,

(A.1)  

which is rearranged as 

Π = 2π
∫R0

0

F1dR + 2π
∫∞

R0

F2dR, (A.2)  

where 

F1 = t0RW(r, r
′

, z
′

) − Δprr
′

z + γlmr
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r′ 2
+ z′ 2

√

+ γlsrr
′

,

F2 = t0RW(r, r′

) + γmsrr′

. (A.3) 

If we use r, z, r′

, z′ as the variation terms, based on Eq. (10), there is 

δΠ = 2πδ
∫R

−
0

0

F1dR + 2πδ
∫∞

R+
0

F2dR = 0, (A.4)  

where R−
0 and R+

0 represent the left (inner) and right (outer) sides of the contact line R = R0, respectively. 
Furthermore, based on the principle of variation, there is 

δ
∫R

−
0

0

F1dR =

∫R
−
0

0

(
∂F1

∂r
δr+

∂F1

∂r′ δr′

+
∂F1

∂z
δz+

∂F1

∂z′ δz′

)

dR + F1|R−
0

δR−
0 , (A.5)  

where 

∫R
−
0

0

∂F1

∂r′ δr
′dR =

∂F1

∂r′ |R−
0
(δr)

(
R−

0

)
−

∂F1

∂r′ |0(δr)(0) −
∫R

−
0

0

d
dR

∂F1

∂r′ δrdR,

∫R
−
0

0

∂F1

∂z′ δz
′ dR =

∂F1

∂z′ |R−
0
(δz)

(
R−

0

)
−

∂F1

∂z′ |0(δz)(0) −
∫R

−
0

0

d
dR

∂F1

∂z′ δzdR. (A.6)  

Similarly, there is 

δ
∫∞

R+
0

F2dR =

∫∞

R+
0

(
∂F2

∂r
δr +

∂F2

∂r′ δr′

)

dR − F2|R+
0

δR+
0 , (A.7)  

where 

∫∞

R+
0

∂F2

∂r′ δr′ dR =
∂F2

∂r′ |∞(δr)(∞) −
∂F2

∂r′ |R+
0
(δr)

(
R+

0

)
−

∫∞

R+
0

d
dR

∂F2

∂r′ δrdR. (A.8) 

Based on the above, we plug Eqs. (A.5)–(A.8) into Eq. (A.4), yielding 
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∫R
−
0

0

((
∂F1

∂r
−

d
dR

∂F1

∂r′

)

δr +
(

∂F1

∂z
−

d
dR

∂F1

∂z′

)

δz
)

dR  

+F1|R−
0

δR−
0 +

∂F1

∂r′ |R−
0
(δr)

(
R−

0

)
+

∂F1

∂z′ |R−
0
(δz)

(
R−

0

)
−

∂F1

∂r′ |0(δr)(0)

−
∂F1

∂z′ |0(δz)(0) +
∫∞

R+
0

((
∂F2

∂r
−

d
dR

∂F2

∂r′

)

δr
)

dR  

− F2|R+
0

δR+
0 +

∂F2

∂r′ |∞(δr)(∞) −
∂F2

∂r′ |R+
0
(δr)

(
R+

0

)
= 0. (A.9) 

To satisfy Eq. (A.9), one obtains 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂F1

∂r
−

d
dR

∂F1

∂r′ = 0

∂F1

∂z
−

d
dR

∂F1

∂z′ = 0

∀ 0 ≤ R ≤ R−
0 , (A.10)  

and 

∂F2

∂r
−

d
dR

∂F2

∂r′ = 0 ∀ R ≥ R+
0 . (A.11) 

In addition, plugging Eq. (A.3) into Eq. (A.10), one obtains 

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

t0

[

R
∂W
∂r

−

(

R
∂W
∂r′

)′ ]

− Δp[r′ z − (rz)
′

] + γlm

[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r′ 2
+ z′ 2

√

−

(
rr′

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
r′ 2

+ z′ 2
√

)′ ]

= 0

t0

[

R
∂W
∂z

−

(

R
∂W
∂z′

)′ ]

− Δprr
′

− γlm

(
rz′

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
r′ 2

+ z′ 2
√

)′

= 0

∀ 0 ≤ R ≤ R−
0 . (A.12)  

Similarly, plugging Eq. (A.3) into (A.11), one obtains 

t0

[

R
∂W
∂r

−

(

R
∂W
∂r′

)′ ]

= 0 ∀ R ≥ R+
0 . (A.13) 

Besides, based on Eq. (1), there is 

∂W
∂r

=
1
R

∂W
∂λθ

,
∂W
∂r′ =

r′

λr

∂W
∂λr

,
∂W
∂z

= 0,
∂W
∂z′ =

z′

λr

∂W
∂λr

. (A.14) 

Now, combining with Eqs. (13) and (A.14), Eq. (A.12) can be rewritten as 

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Δp = −
t0

rz′

[
∂W
∂λθ

−
r′

λr

∂W
∂λr

− R
(

r′

λr

)′

∂W
∂λr

− R
r′

λr

(
∂W
∂λr

)′]

− γlm(κr + κθ)

Δp =
t0

rr
′

[

−
∂W
∂λr

(

R
z′

λr

)′

− R
z
′

λr

(
∂W
∂λr

)′]

− γlm(κr + κθ)

∀ 0 ≤ R ≤ R−
0 . (A.15)  

Similarly, Eq. (A.13) can be rewritten as 

∂W
∂λθ

−
r′

λr

∂W
∂λr

− R
(

r′

λr

)′

∂W
∂λr

− R
r′

λr

(
∂W
∂λr

)′

= 0 ∀ R ≥ R+
0 . (A.16) 

By computing the difference between the two equations in Eq. (A.15) and then combining with Eq. (14), one obtains 

dNr

dR
+

r′

(Nr − Nθ)

r
= 0 ∀ 0 ≤ R ≤ R−

0 . (A.17)  

Meanwhile, by computing the average between two equations in Eq. (A.15) and then combining with Eq. (14), one obtains 

κrNr + κθNθ + γlm(κr + κθ) + Δp = 0 ∀ 0 ≤ R ≤ R−
0 . (A.18) 
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As we can see, Eqs. (A.17)-(A.18) are the equilibrium equations at the inner side of the membrane-confined droplet, shown as Eq. (11). 
Combining with Eq. (14), Eq. (A.16) is expressed as 

dNr

dR
+

r′

(Nr − Nθ)

r
= 0 ∀ R ≥ R+

0 , (A.19)  

which is the equilibrium equation at the outside of the membrane-confined droplet, shown as Eq. (12). 
Now, the residual parts in Eq. (A.9) are considered as boundary terms, which is 

F1|R−
0

δR−
0 +

∂F1

∂r′

⃒
⃒
⃒
⃒

R−
0

(δr)
(
R−

0

)
+

∂F1

∂z′

⃒
⃒
⃒
⃒

R−
0

(δz)
(
R−

0

)
−

∂F1

∂r′

⃒
⃒
⃒
⃒

0
(δr)(0) −

∂F1

∂z′

⃒
⃒
⃒
⃒

0
(δz)(0) − F2|R+

0
δR+

0 +

∂F2

∂r′

⃒
⃒
⃒
⃒

∞
(δr)(∞) −

∂F2

∂r′

⃒
⃒
⃒
⃒

R+
0

(δr)
(
R+

0

)
= 0.

(A.20)  

We know that 

δR−
0 = δR+

0 = δR0, δr
(
R−

0

)
= δr

(
R+

0

)
= δr0, δz

(
R−

0

)
= δz

(
R+

0

)
= δz0,

(δr)
(
R±

0

)
= δr

(
R±

0

)
− (r′

)|R±
0

δR±
0 = δr0 − (r′

)|R±
0

δR0,

(δz)
(
R±

0

)
= δz

(
R±

0

)
− (z

′

)|R±
0

δR±
0 = δz0 − (z

′

)|R±
0

δR0,

(δr)(0) = δr(0) − r
′

(0)δ0 = 0, (δz)(0) = δz(0) − z
′

(0)δ0 = δz(0),

(δr)(∞) = δr(∞) − r
′

(∞)δ(∞) = δr(∞). (A.21)  

Therefore, by plugging Eqs. (A.3) and (A.21) into Eq. (A.20), one obtains 

[
t0RW − Δprr

′

z + γlmr
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r′ 2
+ z′ 2

√

+ γlsrr
′
]⃒
⃒
⃒

R−
0

δR0 +

[

t0R
∂W
∂r′ − Δprz + γlm

rr′

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
r′ 2

+ z′ 2
√ + γlsr

]⃒
⃒
⃒
⃒

R−
0

(
δr0 − (r

′

)|R−
0

δR0

)

+

[

t0R
∂W
∂z′ + γlm

rz′

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
r′ 2

+ z′ 2
√

]⃒
⃒
⃒
⃒

R−
0

(
δz0 − (z

′

)|R−
0

δR0

)
−

[

t0R
∂W
∂z′ + γlm

rz′

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
r′ 2

+ z′ 2
√

]⃒
⃒
⃒
⃒

0
δz(0)−

[t0RW + γmsrr′

]|R+
0

δR0 −

[

t0R
∂W
∂r′ + γmsr

]⃒
⃒
⃒
⃒

R+
0

(
δr0 − (r′

)|R+
0

δR0

)
+

[

t0R
∂W
∂r′ + γmsr

]⃒
⃒
⃒
⃒

∞
δr(∞) = 0.

(A.22)  

Based on Eqs. (1), (2), (14), (19), and (A.14), we simplify it as Eq. (17). By now, all the equilibrium equations and boundary conditions 
are derived for elastic wetting. 

Appendix B. Shooting method 

We adopted shooting method to numerically solve the ODE system consisting of the equilibrium Eq. (11) and various boundary 
conditions given in Section 2.4. Instead of solving 2nd order ODEs for z and r, we solve 1st order ODEs for λθ,λr,z,ϕ. To do so, We plug 
Eq. (2) into Eq. (13), yielding 

κr = −
ϕ

′

λr
, κθ = −

sinϕ
r

. (B.1)  

Combining with Eq. (B.1), Eq. (11) can be then rewritten as 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ
′

=

− (Nθ + γlm)
λr

λθ

sinϕ
R

+ Δpλr

Nr + γlm

λ
′

r =

− cosϕλr

R

(
∂Nr

∂λθ
+

Nr − Nθ

λθ

)

+
∂Nr

∂λθ

λθ

R
∂Nr

∂λr

. (B.2) 

Next, plugging Eq. (15) into Eq. (14), we express the in-plane membrane tractions for neoHookean materials in terms of principal 
stretches as 
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Nr =
μt0

(
λ4

r λ2
θ − 1

)

λ3
r λ3

θ

Nθ =
μt0

(
λ2

r λ4
θ − 1

)

λ3
r λ3

θ

. (B.3) 

Similarly, for Gent materials, plugging Eq. (16) in Eq. (14), one obtains 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Nr =
− μt0Jm

(
λ4

r λ2
θ − 1

)

λrλθ + λ3
r λ3

θ

(
λ2

r + λ2
θ − 3 − Jm

)

Nθ =
− μt0Jm

(
λ2

r λ4
θ − 1

)

λrλθ + λ3
r λ3

θ

(
λ2

r + λ2
θ − 3 − Jm

)

. (B.4) 

A shooting method can be constructed using the terms {y1, y2, y3, y4} = {λθ, z /R0,ϕ, λr} as variables for the corresponding boundary 
value problem. Based on Eqs. (2) and (B.3), we have the computational equations based on the incompressible neo-Hookean material 
model as 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
dR̂

y1 =
y4cosy3 − y1

R̂

d
dR̂

y2 = − y4siny3

d
dR̂

y3 = −

y4
[
y2

4y4
1 − 1 + αy3

4y3
1

] siny3

R̂
−

ΔpR0

μt0
y4

4y4
1

y1
(
y4

4y2
1 − 1 + αy3

4y3
1

) ,

d
dR̂

y4 =
y2

4

(
y2

4y4
1 − 3

)
cosy3 − y4y1

(
y4

4y2
1 − 3

)

R̂y1
(
y4

4y2
1 + 3

)

(B.5)  

where R̂ = R/R0 and α = γlm/μt0. Similarly, based on Eqs. (2) and (B.4), the computational equations based on the incompressible Gent 
material model are expressed as 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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d
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(
y4

4y2
1 + 3

)
δ +

2
(
y4

4y2
1 − 1

)2

Jmy2
4y2

1
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+
2y4

(
y6

4y6
1 − y2

4y2
1I1 + 2

)
( − y4cosy3 + y1)

R̂y1

[
y2

4y2
1

(
y4

4y2
1 + 3

)
Jmδ + 2

(
y4

4y2
1 − 1

)2
]

, (B.6)  

where δ = 1 − (I1 − 3)/Jm. 
In addition, the initial conditions of Eqs. (B.5) and (B.6) at R̂ = 0 are summarized as 

y1(0) = k, y2(0) = 0, y3(0) = 0 and y4(0) = k, (B.7)  

where k is varied until boundary conditions at R̂ = 1 are satisfied. Notably, although the central height of a specific blister system (i.e., 
y2(0)) is an unknown constant physically, assigning y2(0) = 0 is reasonable in computation because the value of y2 is independent with 
the computation of y1, y3 and y4. Besides, to avoid numerical singularity at R̂ = 0, the solution procedure may start at a sufficiently 
small value, i.e., R̂ = ϵ ≪ 1, so that the initial conditions are reformulated as 

y1(ϵ) = k, y2(ϵ) = 0,

Y. Rao et al.                                                                                                                                                                                                            



Journal of the Mechanics and Physics of Solids 151 (2021) 104399

24

y3(ϵ) =
ΔpR0

μt0
k7g(k)

k6 − 1 + αk6g(k)
ϵ, y4(ϵ) = k, (B.8)  

where g(k) = 1 for neo-Hookean materials and g(k) = 1 − (2k6 − 3k4 +1)/(Jmk4) for Gent materials. Combining with boundary con-
ditions discussed in Section 2.4, the elastic wetting problem with neo-Hookean material can be resolved by computing Eq. (B.5); and 
the elastic wetting problem with Gent material can be resolved by computing Eq. (B.6). The numerical solver is coded in Matlab using ϵ 
= 10− 5, which is based on a basic convergence study. 

Appendix C. Numerical results for elastic wetting with Gent membranes 

Figs. C1–C7. 

Fig. C2. The evolution of (a) the elastic wetting contact angle and (b) the aspect ratio of droplets confined by Gent membranes subjected to sliding 
boundary conditions for ϕY = π/4 (dash-dot-dot curves), π/2 (dashed curves) and 3π/4 (solid curves) with various α. The arrows indicate α de-
creases from ∞ to 0. In (a), all the dashed curves and red curves (i.e., when ϕY = π/2 or α = 0) collapse to the red solid line. In (b), all the red curves 
(i.e., when α = 0) collapse to the red solid curve. 

Fig. C1. Profiles of droplets confined by Gent membranes subjected to sliding boundary conditions. V/V0 = 0.5 is prescribed while the elasto- 
capillary numbers α is varying. Solid curves correspond to ϕY = π/4 and dash-dot curves for ϕY = 3π/4. The two red curves overlay. 
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Fig. C4. Normalized (a) free energy-deformation and (b) pressure-deformation relations for elastic wetting with a Gent membrane and an adhesive 
boundary when α = 0.5 and β = − 5 are given. The black and red curves represent configurations without and with edge delamination, respectively. 
The solid curves represent the actual evolution pathways of free energy/pressure. The blue marker at the intersection of the black and red curves 
highlights the critical volume-to-delaminate. (c) The growth of the blister profile under the adhesive boundary. The black and red parts represent the 
sections of the membrane that are initially detached from or attached to the substrate before any liquid injection. In other words, the red parts are 
delaminated membrane due to the increased liquid volume. For the two blister profiles labeled with “before delamination”, their prescribed volumes 
are V/V0 = 0.3 and 0.9. 

Fig. C3. Normalized pressure-deformation relations for elastic wetting with Gent membranes and sliding boundaries under various elasto-capillary 
numbers α. 
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Fig. C5. Contour plots of (a) the normalized pressure, (b) the normalized volume, (c) the elastic wetting contact angle, and (d) the aspect ratio in 
α ∼ β parametric space for elastic wetting with Gent membranes and adhesive boundaries. 

Fig. C6. Contour curves for z(0)/r1 = 2 and ΔpR1/μt0 = 10 in α ∼ β parametric space for elastic wetting with a Gent membrane and an adhe-
sive boundary. 
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