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For elastic slabs, adhesive behaviour is often described
by continuum theories such as Johnson–Kendall–
Roberts (JKR) for compliant systems and by atomistic
force-based models such as Derjaguin–Muller–
Toporov (DMT) for rigid systems, with the transition
between them typically characterized by the Tabor
parameter. In contrast, the adhesion mechanics of
thin elastic membranes remain less understood.
Particularly, although recent studies have applied the
JKR framework to membranes, the corresponding
transition towards the rigid limit has not been fully
established. A central difficulty lies in the fact that
the effective rigidity of a membrane is influenced
not only by its intrinsic Young’s modulus but also by
in-plane residual tension and out-of-plane loading
such as pressure. Here, we address this issue by
introducing a membrane-specific Tabor parameter
that incorporates all of these factors. This parameter
is validated through numerical calculations and
previous experimental measurements, providing a
consistent framework to classify membrane adhesion
across diverse systems, from biological membranes to
microelectromechanical devices.

1. Introduction
Adhesion is a ubiquitous surface phenomenon in nature
and engineering [1], governing processes that range
from biological attachment and tissue interactions [2,3]
to the operation of small-scale devices and flexible
electronics [4,5]. To describe adhesion, a variety of
theoretical models have been established. Probably the
first quantitative model of adhesion was proposed by

2026 The Author(s) Published by the Royal Society. All rights reserved.
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Bradley [6], who considered long-range intermolecular forces and showed that the pull-off force
between two rigid spheres of effective radius Rs is 2πγ Rs, where γ is the adhesion energy density,
that is, the energy per unit area required to separate two surfaces from equilibrium to infinity. For
relatively deformable spheres, the Johnson–Kendall–Roberts (JKR) theory introduced an energetic
argument to demonstrate an elasticity-independent pull-off force of 3

2 πγ Rs [7]. By contrast,
the Derjaguin–Muller–Toporov (DMT) model [8], which also considers elastic deformation but
neglects additional deformation induced by interfacial forces, recovers Bradley’s result in the
limit of rigid spheres. The discrepancies among these models were rationalized by the Tabor
parameter [9], which characterizes the transition from the JKR limit for compliant contacts to the
Bradley/DMT limit for rigid contacts. Subsequent refinements, such as the Maugis–Dugdale [10]
and Greenwood models [11], yielded an adhesion map that delineates the regimes of validity
for different theories [12]. Despite these classical advances, efforts continue to enrich adhesion
models by incorporating new physical ingredients—including capillarity [13–15], viscoelasticity
[16,17], vibration [18,19], lubrication dynamics [20], surface tension and stresses [21–24] and
heterostructures [25]. These efforts were largely driven by applications involving materials with
diverse mechanical responses and complex operating environments.

Among the new ingredients, a particularly important one arises from thin geometry [26–28].
On one hand, when one of the contacting bodies is thin, its effective compliance is determined
not only by material properties but also by external loading conditions and by where and how its
boundaries are constrained [29,30]. For example, atomically thin graphene sheets suspended over
a trench or a hole are approximately clamped at the edges (see figure 1a) [33]. In this configuration,
transverse pressure can induce in-plane strain proportional to the square of the pressurized
deflection, thereby stiffening the response to indentation contact [34–36]. On the other hand,
adhesion—as a surface phenomenon sensitive to the surface-to-volume ratio of solids—is strongly
amplified in thin geometries [37,38]. This can be evidenced by the nearly inevitable pull-off
forces observed in indentation tests on thin membranes across scales, from macroscopic adhesive
tapes to nanoscale graphene (see figure 1b) [39–41]. Consequently, the interplay between these
rich mechanical responses and the strong adhesion effect gives rise to considerable complexity.
A concrete illustration can be provided by slightly pressurized graphene sheets, which exhibit not
only a stiffer indentation response but also a markedly larger pull-off force due to this interplay
(figure 1c) [32], a phenomenon described as ‘stiffer is stickier’ in [31].

The pull-off force for membranes in the rigid limit remains consistent with Bradley’s
prediction, 2πγ Rs. In contrast, in the compliant limit, it has recently been shown to reduce to πγ Rs

[42,43], a value slightly different from the JKR result for elastic slabs but, remarkably, independent
of both the size and the constitutive behaviour of the membrane [44]. Hence, the stiffer is stickier
phenomenon observed in thin membranes is conceptually analogous to the transition from JKR
to Bradley in elastic slabs as their Young’s modulus increases and the Tabor parameter decreases
[31]. Defining a Tabor parameter for elastic membranes, however, is non-trivial, since membranes
may appear stiff either owing to their intrinsically large in-plane modulus or as a consequence of
pretension or external pressurization. Previous efforts have typically focused on a single stiffening
mechanism, such as pressurization [31], or on simplified systems, such as linearized membrane
theory [45–47]. Despite the coexistence of multiple stiffening sources and the intrinsic nonlinearity
of the problem, to date, a unified framework that captures how these different sources of stiffening
collectively govern the adhesion of elastic membranes remains elusive.

This work aims to address this gap in thin membrane adhesion by elucidating how the elastic
modulus, pretension, pressure and membrane geometry together control the transition of the
pull-off force from the microscopic (Bradley) limit to the macroscopic (JKR-type) limit. To this end,
we propose a membrane-specific generalization of the Tabor parameter, which shows excellent
agreement with both numerical simulations and experimental measurements. The remainder of
this paper is organized as follows. In §2, we outline the adhesion problem of elastic membranes
and introduce both macroscopic and microscopic perspectives. In §3, we develop develops the
macroscopic model, including a discussion of a combined vertical characteristic length scale. In
§4, we present the microscopic model and identify three routes through which a membrane can
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Figure 1. Phenomenology. (a) In situ scanning electron microscope images showing an indenter approaching and retracting
from a suspended, slightly pressurized monolayer graphene sheet. Scale bars: 1µm. (b) Force–displacement curves from the
indentation experiment. The purple curve corresponds to the approaching process, during which the indenter suddenly jumps
into contact with the graphene sheet, while the green curve corresponds to the retracting process, where the indenter abruptly
detaches after reaching a critical pulling force (i.e. the pull-off force). Note that the results in (a,b) aremeasured from a different
specimen but obtained using the same experimental set-up reported in [31]. (c) Relative pull-off force maps measured on
graphene suspended over a circular hole. The pull-off forces are normalized by the average values measured on the supported
region. From left to right, the graphene is increasingly pressurized, with the induced biaxial strain at the centre of the hole
indicated (up to 0.6%). Scale bars: 2µm. Figures in (c) are reproduced from [32] with permission.

effectively behave as rigid, leading to three subparameters and a unified, generalized parameter.
In §5, we demonstrate how this generalized Tabor parameter can be applied to interpret previous
pull-off force measurements on elastic membranes. Finally, in §6, we summarize our findings and
discuss their broader implications for adhesion in thin membranes.

2. Problem statement
Figure 2 illustrates the system under study: a rigid sphere of radius Rs interacting with a thin
elastic membrane of radius Rf . The membrane is clamped under a pretension Tpre and subjected
to a moderate transverse pressure p. Its in-plane elastic properties are characterized by Poisson’s
ratio ν and in-plane stiffness Et, where E and t denote the Young’s modulus and thickness of
the membrane, respectively. Following the experimental configuration shown in figure 1, we
consider a push–pull process. During the pushing stage, the sphere approaches the membrane
and establishes adhesive contact; during the pulling stage, it retracts. Since our primary interest
lies in the pull-off force, we define the upward pulling direction as positive, such that a positive
force is required to detach the sphere from the membrane.

Analogous to the classical adhesion mechanics of elastic slabs, membrane adhesion can be
analysed from two perspectives. From the macroscopic perspective (figure 2b), the membrane
is divided into a contact zone of area Acontact and radius a, and a non-contact zone for r > a.
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Figure 2. Problem description. (a) Schematic of a rigid sphere in adhesive contact with a clamped elastic membrane subjected
to a uniformpretension, showing the key physical quantities. Owing to the presence of adhesion, a finite pulling force is required
to separate the sphere from themembrane. (b) Macroscopic view of the adhesion. Themembrane is divided by the contact line
at r = a into a contact zone (r < a) and a non-contact zone (r > a). In the presence of adhesion γ , a slope discontinuity is
expected at the contact line, which can be described by Young’s equation given in equation (3.8). (c) Microscopic view of the
adhesion. There is no distinct contact zone; adhesion arises from long-range intermolecular (van derWaals) forces acting across
the interface with magnitude depending on the local interface separation g.

Formation of the contact zone reduces the surface energy, γ Acontact, with γ the adhesion energy
density, which is balanced by the additional elastic deformation energy of the membrane.
Consequently, the contact radius is determined by minimizing the total energy of the system,
which includes the elastic energy, the work done by the applied force and the adhesion energy,
i.e.

Utot = Uelastic − Fδ − γ Acontact, (2.1)

where F and δ denote the pulling force and displacement, respectively. The equilibrium contact
area is then obtained from

∂Utot

∂Acontact

∣∣∣∣
F or δ

= 0. (2.2)

It is therefore natural to refer to this framework as JKR-type adhesion.
From the microscopic perspective, by contrast, adhesion originates from intermolecular forces

acting across the interface, a framework we refer to as Greenwood-type adhesion [11]. For a
membrane interacting with a rigid sphere, the local adhesive traction can be modelled using a
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simplified Lennard–Jones (LJ)-type potential [48–50], given by

σadh(g) = 8γ

3z0

[(
z0

g

)3
−
(

z0

g

)9
]

, (2.3)

where g(r) is the local separation distance between the surfaces and z0 is the equilibrium
spacing. Integrating this traction over the contact area provides the total adhesive force at
the microscopic level. In the following, we develop both the macroscopic (JKR-type) and
microscopic (Greenwood-type) adhesion models and aim to integrate them into a unified
multiscale description, which can capture the effects of membrane elasticity, pretension, pressure
and geometry on the pull-off behaviour.

3. The macroscopic adhesion model

(a) The mixed boundary value problem
We employ the Fóppl membrane theory (i.e. the membrane limit of the Fóppl–von Kármán
equations) to describe the deformation of the elastic membrane [34,51]. Specifically, we adopt
the formulation in terms of the Airy stress function φ and the transverse deflection w [52]. The
out-of-plane equilibrium equation is then expressed as

1
r

dφ

dr
dw
dr

+ φ

r
d2w
dr2 + q(r) = 0, (3.1)

where q(r) denotes the external transverse load acting on the membrane. The principal in-plane
stress resultants are related to the Airy stress function through

Nrr = φ

r
and Nθθ = dφ

dr
, (3.2)

so that the in-plane equilibrium condition is automatically satisfied. To close the system, a
geometric compatibility condition is required:

r
d
dr

[
1
r

d
dr

(rφ)
]

+ 1
2

Et(w′)2 = 0, (3.3)

where the prime denotes differentiation with respect to r.
As shown in figure 2b, the adhesive contact between the rigid sphere and the clamped

membrane can be viewed, from a macroscopic perspective, as a mixed boundary value problem.
The external load q(r) enforces the membrane to conform to the spherical profile

w = δ + Rs −
√

R2
s − r2 ≈ δ + r2

2Rs
, (3.4)

for r < a, while q(r) = p holds in the non-contact region (r > a). To facilitate computation, we first
solve the inner region analytically by substituting equation (3.4) into equation (3.3), subject to
the axisymmetric boundary conditions w′(0) = 0 and Nrr(0) = Nθθ (0). This yields the following
continuity condition regarding the in-plane displacement at the contact line r = a:

φ(a)
a

− φ′(a) = Eta2

8R2
s

. (3.5)

The problem is thus reduced to a single domain (a < r < Rf ), although the contact radius a remains
unknown and to be determined; consequently a total of five boundary conditions are required.
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In addition to equation (3.5), the continuity of membrane deflection at the contact line requires

w(a) = δ + a2

2Rs
. (3.6)

At the clamped edge, both the deflection and the in-plane displacement are constrained by the
applied pretension Tpre. Accordingly, the boundary conditions are

w(Rf ) = 0 and φ′(Rf ) − ν
φ(Rf )

Rf
= (1 − ν)Tpre. (3.7)

The final missing condition is associated with determining the position of the contact line a,
which follows from minimizing the total system energy according to equation (2.2). Alternatively,
this condition has been shown to be equivalent to the discontinuity in the membrane slope
across the contact line [51]. Specifically, in the absence of adhesion, the deflection slope remains
continuous at r = a. The presence of adhesion, however, introduces a finite contact angle θ

(figure 2b), which satisfies a Young’s equation [44,53,54]:

N−
rr(a) = N+

rr(a) cos θ + γ , (3.8)

where γ is the adhesion energy per unit area, and N−
rr(a) and N+

rr(a) denote the radial membrane
tensions immediately inside and outside the contact line, respectively. Since the membrane
tension is continuous across the contact line and the rotation is moderate, equation (3.8) can yield
an approximate slope jump condition:

w′(a−) − w′(a+) ≈
√

2γ a
φ(a)

. (3.9)

We shall solve equations (3.1) and (3.3) subject to the boundary conditions equations (3.5)–(3.9)
numerically. To evaluate the corresponding external force, we consider the static equilibrium of
the membrane by making an annular cut at any position in the non-contact region (r > a). The
total pulling force is then given by

F = −2πaNrr(a)w′(a+) − πa2p = −2πφ(a)w′(a+) − πa2p, (3.10)

where the cut is taken right outside the contact line (r = a+).

(b) Non-dimensionalization
While it is natural to use the in-plane stiffness of the membrane, Et, for non-dimensionalization,
the appropriate geometric length scales for rescaling are not immediately obvious. To address
this, we introduce a macroscopic vertical length scale, δmacro (to be specified shortly), and define
the corresponding vertical and horizontal length scales as

δ∗ := δmacro and a∗ :=
√

δmacroRs, (3.11)

which follow the geometry of the sphere. Based on these, the governing variables are non-
dimensionalized as

W̄ = w
δ∗

, Φ̄ = φ

Eta∗
, R̄ = r

a∗
, Δ̄ = δ

δ∗
, A = a

a∗
and F = F

πγ Rs
, (3.12)

and the problem is controlled by five non-dimensional parameters:

R̄f = Rf

a∗
, R̄s = Rs

a∗
, P = pRs

Et
, Γ = γ

Et
and Tpre = Tpre

Et
, (3.13)

which describe, respectively, the membrane size, sphere radius, applied pressure, adhesion
strength and pretension.
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As such, the non-dimensional forms of the governing equations (3.1) and (3.3) are

1

R̄

dΦ̄

dR̄

dW̄

dR̄
+ Φ̄

R̄

d2W̄

dR̄2
+ P = 0 (3.14)

and
dΦ̄

dR̄
− Φ̄

R̄
+ R̄

d2Φ̄

dR̄2
+ 1

2R̄2
s

(
dW̄

dR̄

)2

= 0. (3.15)

Corresponding to equations (3.5)–(3.7), the associated boundary conditions can be expressed as

W̄(A) = Δ̄ + 1
2

A2, W̄′(A+) = A − R̄s

√
2Γ A
Φ̄(A)

and
Φ̄(A)

A
− Φ̄ ′(A) = A2

8R̄2
s

(3.16)

at the contact line and

W̄(R̄f ) = 0 and R̄f Φ̄
′(R̄f ) − νΦ̄(R̄f ) = (1 − ν)R̄fTpre (3.17)

at the clamped outer edge. Finally, the dimensionless pulling force can be obtained from
equation (3.10) as

F = −2Φ̄(A)W̄′(A+)

Γ R̄2
s

− PA2

Γ R̄2
s

. (3.18)

(c) The macroscopic vertical length scale
Now we may specify a δmacro to eliminate one of the five controlling parameters in
equation (3.13)—for example, setting δmacro = Rs so that R̄s = 1. However, rather than adopting
a purely geometrical scaling, we prefer to define δ∗ based on some physical considerations. This
would enable a more meaningful comparison between the present macroscopic model and the
microscopic model to be discussed in the next section.

The characteristic vertical length scale δ∗ can be estimated by considering the spontaneous
deflection of the membrane in adhesive contact with the sphere, where ‘spontaneous’ indicates
that no external pulling force is applied. Adhesion is sufficient to induce a deflection δmacro over a
lateral scale a∗ ∼ √

δmacroRs. The associated strain scales as (δ∗/a∗)2, and the corresponding elastic
energy can be estimated as

Uelastic ∼ Ttotal
δ2∗
a2∗

× a2
∗, (3.19)

where Ttotal is the typical membrane tension in the contact region. This tension has three
contributions: (i) the initial pretension Tpre, (ii) tension induced by pressurization,

Tp ∼ (Etp2R2
f )1/3, (3.20)

and (iii) additional tension generated by the spontaneous deflection itself, scaling as Et(δ∗/a∗)2.
A simple estimate of the total tension is therefore

Ttotal ∼ Tpre + Tp + Et
(

δ∗
a∗

)2
. (3.21)

This elastic energy must balance the adhesion energy, which scales as

Uadhesion ∼ γ a2
∗. (3.22)

Equating Uelastic and Uadhesion yields a quadratic equation in terms of δ∗, and an explicit
expression for the characteristic vertical deflection is ultimately obtained as

δmacro =
√

[(Etp2R2
f )1/3 + Tpre]2 + 4Etγ − (Etp2R2

f )1/3 − Tpre

2Et/Rs
. (3.23)

Of course, this definition of δmacro can also be used to eliminate one of the controlling
parameters in equation (3.13), albeit in a slightly more involved manner. By substituting the
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non-dimensional parameters from equation (3.13) into equation (3.23), we obtain

2R̄−2
s =

√(
P2/3

α2/3 + Tpre

)2

+ 4Γ − P2/3

α2/3 − Tpre, (3.24)

where

α = R̄s

R̄f
= Rs

Rf
(3.25)

represents the relative size of the sphere with respect to the membrane. Consequently, for a given
α, the non-dimensional sphere radius R̄s can be determined from equation (3.24), and the non-
dimensional membrane radius R̄f follows directly from equation (3.25).

It is now clear that the macroscopic model, as specified by equations (3.14)–(3.18), is exclusively
governed by four dimensionless quantities: the adhesion energy Γ , the pretension Tpre, the
pressure P and the geometric parameter α. We solve this problem, defined over the domain
A < R̄ < R̄f , numerically using the boundary value problem solver bvp5c in MATLAB. For a
prescribed pulling displacement Δ̄, the contact radius A would, in principle, be treated as
unknown to satisfy all boundary conditions simultaneously. In practice, however, we found it
more convenient to prescribe A and then solve for the corresponding pulling displacement from
equation (3.16) and the required pulling force from equation (3.18) to achieve the desired contact
radius.

In figure 3, we present the pulling force–displacement and pulling force–contact radius curves
for various combinations of Γ , Tpre, P and α. Consistent with previous findings [44], the maximum
pulling force during detachment is given by

Fc = 1, (3.26)

that is, Fc = πγ Rs in dimensional form, independent of the membrane size, sphere radius,
adhesion strength or applied pressure. Here, we apply a sufficiently small pressure such that the
curvature of the pressurized membrane remains much smaller than that of the sphere; otherwise,
the pressurized geometry would influence the pull-off force [53]. Dashed curves in figure 3 denote
the post-pull-off branches of the force–displacement and force–contact radius curves, which are
inaccessible in force-controlled experiments owing to the jump-out-of-contact instability.

A notable feature in figure 3 is that, after rescaling the pulling displacement by δ∗ and the
contact radius by a∗ as defined in equation (3.11), the corresponding Δ̄c and Ac at the pull-
off point are both approximately of order O(1). For instance, this is evident in figure 3a,b,
where the adhesion parameter Γ varies over four orders of magnitude. These results justify the
appropriateness of using the characteristic vertical length scale δmacro defined in equation (3.23)
for describing the macroscopic adhesion model. We now proceed to the microscopic adhesion
model and its corresponding characteristic vertical length scale.

4. The microscopic adhesion model

(a) Governing equations
From a microscopic perspective, the sphere interacts with the membrane through intermolecular
forces acting across the entire interfacial domain (see figure 2c). When the interfacial traction
follows an LJ type law, as given in equation (2.3), the geometric compatibility equation (3.3)
remains identical to that of the macroscopic model, while the vertical force balance in
equation (3.1) is modified to

1
r

dφ

dr
dw
dr

+ φ

r
d2w
dr2 + p + 8γ

3z0

[(
z0

g

)3
−
(

z0

g

)9
]

= 0, (4.1)
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Figure 3. The macroscopic (JKR-type) adhesion model. (a,b) Rescaled pulling force–displacement and pulling force–contact
radius curves computed for various adhesion energiesΓ withα = 0.05,Tpre = 0.01 and P = 5 × 10−5. The inset provides a
magnified view near the zero external force point. (c,d) Rescaled pulling force–displacement and pulling force–contact radius
curves computed for various sphere-to-membrane size ratiosαwithΓ = 0.05,Tpre = 0.01 andP = 5 × 10−5. (e,f) Rescaled
pulling force–displacement and pulling force–contact radius curves computed for various pretensions Tpre with Γ = 0.05,
α = 0.05 and P = 5 × 10−5. (g,h) Rescaled pulling force–displacement and pulling force–contact radius curves computed
for various pressure levels PwithΓ = 0.05,α = 0.05 andTpre = 0.01. Note that the definition of the controlling parameters
can be found in equations (3.13) and (3.25).
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for 0 ≤ r ≤ Rf , where z0 is the equilibrium separation between the two surfaces, and the local gap
g is given by

g(r) = δ + r2

2Rs
− w(r). (4.2)

Here, the Derjaguin approximation has been employed [55]. The boundary conditions at the outer
clamped edge in equation (3.7) remain unchanged, whereas at the origin, we impose symmetry
and zero in-plane displacement, i.e.

w′(0) = 0 and lim
r→0

[rφ′(r) − νφ(r)] = 0. (4.3)

The pulling force applied to the sphere is balanced by the net van der Waals traction acting over
the entire interaction region, expressed as

F =
∫Rf

0

8γ

3z0

[(
z0

g

)3
−
(

z0

g

)9
]

2πr dr. (4.4)

Different from the macroscopic model discussed in the preceding section, the microscopic
model naturally provides a characteristic vertical length scale through the equilibrium separation
of the interface, z0. Accordingly, we define

δ∗ := δmicro = z0 and a∗ :=
√

z0Rs, (4.5)

and perform non-dimensionalization in a form analogous to equation (3.12), yielding

W = w
z0

, Φ = φ

Et
√

z0Rs
, R = r√

z0Rs
, Δ = δ

z0
and G = g

z0
. (4.6)

The associated dimensionless control parameters are then given by

Rf = Rf√
z0Rs

, Rs = Rs√
z0Rs

, P = pRs

Et
, Γ = γ

Et
and Tpre = Tpre

Et
. (4.7)

Note that the definitions of the dimensionless pressure P, adhesion Γ and pretension Tpre remain
identical to those used in the macroscopic formulation in equation (3.13).

We then present the dimensionless forms of equations (4.1) and (3.3):

1
R

dΦ

dR
dW
dR2 + Φ

R
d2W
dR

+ P + 8
3
ΓR2

s

(
1

G3 − 1
G9

)
= 0 (4.8)

and
dΦ

dR
− Φ

R
+ R

d2Φ

dR2 + 1

2R2
s

(
dW
dR

)2
= 0, (4.9)

where the dimensionless interfacial gap G is expressed as

G(R) = Δ + 1
2

R2 − W(R). (4.10)

The boundary conditions equations (4.3) and (3.7) become

W′(0) = 0 and lim
R→0

[RΦ ′(R) − νΦ(R)] = 0 (4.11)

at the origin and

W(Rf ) = 0 and Rf Φ
′(Rf ) − νΦ(Rf ) = (1 − ν)RfTpre (4.12)

at the edge. The dimensionless pulling force is given by

F = 16
3

∫Rf

0

(
1

G3 − 1
G9

)
R dR, (4.13)

which reaches a maximum value of 2 when the membrane is perfectly rigid (W = 0), consistent
with the classical Bradley limit.
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The coupled nonlinear equations (4.8)–(4.13) are solved numerically using a finite-difference
scheme combined with the Newton–Raphson iteration method (see details in appendix A).
Clearly, the entire microscopic system is governed by the five dimensionless quantities defined in
equation (4.7), which contain one additional parameter compared with the macroscopic model
owing to the introduction of the interfacial equilibrium length scale z0. Since the controlling
parameters P, Γ and Tpre are identical to both models, the essential distinction lies in their
geometric characterization: the microscopic model features two independent ratios, Rs and Rf ,
whereas the macroscopic model is described by a single geometric parameter α. To make a fair
comparison between the two frameworks, we need to set α =Rs/Rf while keeping P, Γ and Tpre

identical. However, this correspondence is not unique—infinitely many pairs of (Rs,Rf ) can yield
the same α. Intriguing questions then arise: how do different microscopic combinations (leading
to the same macroscopic geometry) influence the system’s behaviour, and to what extent do their
predictions deviate from those of the macroscopic model?

(b) Transition parameters
To address the questions posed above, it is essential to establish a bridge between the macroscopic
and microscopic perspectives of adhesion illustrated in figure 2. Since each model possesses its
own characteristic lengths defined in equations (3.11) and (4.5), respectively, a natural way to
connect them is through the ratio of these lengths:

λ = δmacro

δmicro
=

⎡
⎢⎣
√√√√[(pRf

Et

)2/3

+ Tpre

Et

]2

+ 4γ

Et
−
(pRf

Et

)2/3

− Tpre

Et

⎤
⎥⎦ Rs

2z0
. (4.14)

Clearly, physical quantities involved in λ are physically transparent. We show shortly that
reducing the membrane’s apparent stiffness—through a decrease in pressure, pretension or
intrinsic modulus—or increasing the sphere radius leads to a larger value of λ. Physically, the
condition λ 	 1 indicates that the spontaneous deflection of the membrane, δmacro, induced
by adhesion is much greater than the equilibrium separation δmicro (i.e. z0). In this regime,
microscopic details at the scale of z0 become negligible, and one may expect the formation of a
well-defined ‘contact zone’, as illustrated in figure 2b. The overall adhesion behaviour, therefore,
should approach that described by the macroscopic (JKR-type) adhesion model. Conversely,
when the membrane becomes effectively rigid and the microscopic length dominates (λ 
 1), the
equilibrium separation z0 far exceeds the spontaneous deflection δ∗, and the adhesion behaviour
tends towards the Bradley rigid-body limit. In this sense, λ quantifies the relative flexibility of the
membrane compared with the adhesive strength.

The classical Tabor parameter for elastic slabs is expressed as μ = R1/3γ 2/3/(E2/3
∗ z0), where R

and E∗ are the equivalent radius and the elastic modulus, respectively. It can also be viewed as a
comparison between macroscopic characteristic length R1/3γ 2/3/E2/3

∗ and the microscopic length
z0 [9,15]. Therefore, λ defined here is conceptually analogous to the Tabor parameter μ for elastic
slabs. We thus regard λ as a generalized Tabor parameter for elastic membranes. Note, however,
that owing to the unique geometric characteristics of the membrane, parameter λ involves a
greater number of physical quantities, making its specific expression considerably more complex
than that of the Tabor parameter μ.

As discussed above, the membrane may appear rigid under indentation owing to three distinct
factors: its intrinsic stiffness, the applied pretension and the external pressure. We may clarify
their individual contributions to the generalized Tabor parameter by examining each effect
separately. For example, in the absence of pretension and pressure, equation (3.23) simplifies to
δmacro = Rs

√
γ /Et. Comparing this to the microscopic equilibrium separation z0 yields

λE =
√

γ

Et
Rs

z0
=

√
ΓR2

s , (4.15)

Downloaded from http://royalsocietypublishing.org/rspa/article-pdf/doi/10.1098/rspa.2025.0932/5646366/rspa.2025.0932.pdf
by Peking University Library user
on 22 January 2026



12

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A482:20250932

..........................................................

which quantifies the role of the intrinsic membrane stiffness. Similarly, the contribution of the
pretension can be represented as

λT = γ Rs

Tprez0
= ΓR2

s
Tpre

, (4.16)

and that of the external pressure as

λp = γ Rs

(Etp2R2
f z3

0)1/3
= ΓR8/3

s

P2/3R2/3
f

. (4.17)

The generalized Tabor parameter can then be rewritten as a combined measure:

λ = 2√
((1/λp) + (1/λT))2 + (2/λE)2 + 1/λp + 1/λT

. (4.18)

This highlights that the apparent rigidity of the membrane is dictated by the most dominant
stiffening mechanism: whenever any of the subparameters is small, the overall λ becomes small,
pushing the system towards the rigid (Bradley-like) limit. Interestingly, we find that the problem
can be rescaled such that the number of independent controlling parameters is reduced from five,
as defined in equation (4.7), to four (λE, λT, λp and Rf ); see appendix B.

(c) Microscopic-to-macroscopic transition
In this section, we systematically vary the magnitude of each subparameter while keeping the
other two sufficiently large. This strategy enables us to isolate and quantify the distinct roles of
the intrinsic stiffness, pretension and external pressure in governing the adhesion behaviour of
elastic membranes. The combined effects arising from mixed variations of these subparameters
will be analysed in the subsequent section.

(i) Transition caused by intrinsic stiffness

We first investigate the influence of the intrinsic membrane stiffness, characterized by the
parameter λE. To this end, the pretension and pressure are both set to zero (Tpre = P = 0), so that
λT and λp approach infinity, yielding λ = λE. The corresponding pull-off force Fc as a function of
λE is shown in figure 4a. Notably, although the calculations are performed for specific values of
Γ and Rs, the results expressed in terms of λE are essentially independent of Rs. Moreover, they
exhibit negligible sensitivity to Rf ; for example, the Fc–λE curves obtained with Rf = 20 and 500
nearly coincide in figure 4a.

In figure 4a, a clear microscopic-to-macroscopic transition is observed. As λE increases from
10−3 to 102, the pull-off force Fc decreases from 2πγ Rs (the Bradley limit) to πγ Rs (the JKR-
type limit). The corresponding configurations of the membrane at the pull-off point for these two
limits are illustrated in the insets of figure 4a. According to equation (4.15), this transition can
be experimentally realized by decreasing the membrane stiffness or, equivalently, by increasing
either the sphere radius or the adhesion energy.

We further examine the pulling force–displacement responses for various values of λE, as
shown in figure 4b,c. As λE decreases, the force–displacement curve gradually approaches the
Bradley limit, in which the pull-off process is smooth. When λE exceeds a critical value, however,
jump-in and jump-out instabilities emerge (see the dashed curves in figure 4b), similar to the
behaviour observed for elastic slabs [11]. With a further increase in λE, the numerical results
obtained from the microscopic adhesion model converge towards those from the macroscopic
(JKR-type) adhesion model, as indicated by the dash-dotted curves in figure 4c. Note that in
the absence of pretension and pressure, this transition is governed solely by λE, as defined in
equation (4.15), almost independent of the specific geometrical values of Rs and Rf .

To further elucidate this transition, we examine the detailed membrane deflection for λE

ranging from 1 to 100, as shown in figure 5. To avoid scale distortion of the rigid sphere caused by
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Figure 4. Microscopic-to-macroscopic transition induced by the intrinsic membrane stiffness. (a) Numerical results of the pull-
off force for varying λE (obtained by adjusting Γ withRs = 20,Rf = 100, P = 0 and Tpre = 0). The insets illustrate the
membrane configurations at the pull-off point for the microscopic (Bradley) and macroscopic (JKR-type) limits. (b,c) Pulling
force–displacement curves computed for different values ofλE , with curve colours corresponding to the cross-shaped markers
in (a). The black curve in (b) represents the Bradley limit, while the dash-dotted curves in (c) show the corresponding results
from the macroscopic adhesion model using the same set of controlling parameters andα =Rs/Rf .

different non-dimensional treatments in the horizontal and vertical directions, all quantities are
plotted in their dimensional units (using Rf = 2000 nm, Rs = 400 nm, Et = 340 N/m, z0 = 1 nm and
γ = 2.125 × 10−3, 2.125 × 10−1 and 2.125 × 101 nm, respectively). As λE increases, corresponding
to larger adhesion energy γ , the membrane exhibits progressively larger deflections, such that
the fine details of the interfacial gap near the centre become negligible compared with the overall
deformation (figure 5a). The resulting profile naturally divides into two regions: an inner region
that nearly conforms to the spherical surface and an outer region that rapidly detaches from it.

This observation motivates the introduction of a contact line in the microscopic adhesion
model to delineate the two regions. Specifically, we define the contact line as the position
where the van der Waals traction attains its maximum value, which conceptually corresponds
to the stress singularity at the edge of the JKR contact [1]. At this location, the gap satisfies
g/z0 = 31/6 ≈ 1.2 (indicated by the dashed line in figure 5b). Within the contact zone, the surface
gap remains nearly uniform and of the order of the equilibrium distance z0, while the interfacial
LJ potential energy is of the order of the adhesion strength γ . In contrast, in the non-contact zone,
the gap increases rapidly, leading to a sharp decay of the interfacial potential (figure 5b,c). When
the total interfacial potential energy over the entire membrane is compared with the nominal JKR-
type adhesion energy πγ a2, their ratio approaches unity as λE increases (figure 5d). Consequently,
the adhesion behaviour asymptotically approaches the JKR-type limit, in which the interfacial
separation within the contact region can be neglected and the adhesion strength is effectively
uniform across the contact area, while the exterior region becomes essentially non-interacting.
Based on the above analysis, we may obtain an additional qualitative physical interpretation of
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Figure 5. Detailed analysis of the membrane deformation for λE = 1, 10 and 100 (curve colours correspond to those in
figure 4c). (a)Membrane profiles at themaximumpull-off force. The inset shows an enlarged viewof the region near the contact
line forλE = 100. (b) Interfacial gap distribution near the membrane centre. The dashed line indicates the gap where the van
der Waals traction reaches its maximum value (d = 31/6z0), and the circular markers denote the radii at which the membrane
attains its highest point. (c) Distribution of the local interfacial LJ potential energy (ULJ(r)=

∫∞
g σadhdz) relative to adhesion

γ . The dashed line marks the relative potential energy evaluated at the contact line. (d) Ratio of the total interfacial potential
energy over the entire membrane (Uad = ∫Rf

0 ULJ(r)2π rdr) to the JKR-type adhesion energy within the contact region, plotted
as a function ofλE .

λE: it characterizes the relative size of the ‘process zone’ of the adhesive energy ULJ outside the
contact region. In essence, it represents the ratio of the macroscopic to microscopic horizontal
characteristic length scales.

(ii) Transition caused by pretension

We now examine the effect of pretension on the adhesion behaviour. When λT is much smaller
than the other two subparameters, the overall Tabor parameter can be approximated as λ ≈ λT. We
then keep the geometric parameters unchanged (Rf = 2000 nm and Rs = 400 nm), set the external
pressure to zero (P = 0) and fix the intrinsic stiffness at a sufficiently small value (Et = 0.016 N m−1

with γ = 0.1 N m−1 and z0 = 1 nm) such that λE = 1000 and λp = ∞. We then vary the pretension
Tpre while keeping all other parameters constant, thereby eliminating the influence of intrinsic
stiffness and external pressure. The corresponding numerical results for Rf = 100 are presented
in figure 6.

The evolution of the adhesion behaviour dominated by λT closely mirrors that governed by
λE. As λT increases (equivalently, as the pretension Tpre decreases), the pull-off force decreases
from 2πγ Rs (the Bradley limit) to πγ Rs (the JKR-type limit). This trend demonstrates that the
membrane pretension Tpre effectively tunes the adhesion response, consistent with previous
analyses and experimental measurements [45,47]. Moreover, the dimensionless Fc–λT relation is
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Figure 6. Microscopic-to-macroscopic transition induced by the pretension. (a) Numerical results of the pull-off force for
varying λT at λE = 1000 (obtained by adjusting Tpre withRs = 20,Rf = 100, P = 0 and Γ = 6.25). (b) Pulling force–
displacement curves and (c) the enlarged view computed for different values of λT , with curve colours corresponding to the
cross-shaped markers in (a). The black curve in (b) represents the Bradley limit, while the dash-dotted curves in (c) show the
corresponding results from the macroscopic adhesion model using the same set of controlling parameters andα =Rs/Rf .

nearly insensitive to the membrane radius Rf , as the results for different Rf values with Rf = 20
and Rf = 500 almost coincide in figure 6a.

(iii) Transition caused by transverse pressure

The effect of transverse pressure, represented by the subparameter λp, exhibits a behaviour
distinct from that governed by λE or λT. In principle, a sufficiently large λE would suppress
the influence of the membrane stiffness Et and isolate the contribution of λp. However,
excessively large λE values lead to numerical instability. To maintain computational robustness
while preserving physical relevance, we therefore set λE = 1 and explore the entire range λp ∈
[10−3, 103]. For clarity, this range is divided into two regimes (figure 7): the λE-dominated domain
(blue region; λE 
 λp) and the λp-dominated domain (yellow region; λp 
 λE).

In the λE-dominated domain, increasing λp has little influence on the pull-off force, which
remains nearly constant and converges to the value indicated by the green cross-shaped marker
in figure 7. This point corresponds to the same pull-off force as that for λE = 1 in figure 4a (same
colour), confirming that in this regime, λ is very close to λE and λE = 1 is not sufficiently large
to drive the transition towards the JKR-type limit. Again, the results are nearly insensitive to the
membrane radius Rf , consistent with the trends observed in the previous subsections.

In the λp-dominated domain, however, a qualitatively different behaviour emerges. As λp

decreases (or equivalently, as the external pressure P increases), the pull-off force no longer rises
towards the Bradley limit but instead begins to decrease. This reduction is strongly dependent
on the membrane radius Rf : a smaller Rf yields a lower maximum pull-off force, and the critical
λp at which the force begins to drop shifts to higher values. This phenomenon can be attributed
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Figure 7. Influence of the pressure subparameter λp at λE = 1 and λT = ∞ forRf ∈ {20, 100, 500} andRs = 20. The
solid curves represent the numerical results, and the dash-dotted curves are the solutions of the pressurized Bradleymodel. The
plot is partitioned atλp = 1 into aλE-dominated domain (blue region;λp 	 1) and aλp-dominated domain (yellow region;
λp 
 1). The green cross-shaped marker matches the marker of the same colour in figure 4a.

to the pressurization-induced deformation of the membrane, or equivalently, to the increase in
the local curvature near the centre, which enlarges the interfacial spacing and weakens the van
der Waals attraction. The ratio of the membrane’s central curvature to that of the sphere scales
as β ∼ δpRs/R2

f , which can be rewritten as β ∼ λE/(λ1/2
p Rf ). At constant λE, smaller λp or Rf

thus produce a larger β, indicating a stronger curvature effect and a corresponding reduction
in adhesion strength.

To verify this interpretation, we introduce a pressurized Bradley model, consisting of a rigid
sphere in contact with a rigidly bulged membrane. Unlike the conventional Bradley model,
the membrane in this case exhibits an initial curvature induced by the applied pressure, and
the subsequent effects of van der Waals traction on the membrane’s shape are neglected,
which procedurally shares similarities with the DMT model. The corresponding computational
approach involves first determining the membrane’s shape under pure pressure, and then using
this as the foundation to calculate the net force arising from the van der Waals interaction. The
corresponding numerical solutions of the pressurized Bradley model for different Rf are plotted
as dash-dotted curves in figure 7. This model reproduces the observed trends: as λp decreases, the
numerical results progressively converge towards the pressurized Bradley limit, where the pull-
off force is dominated by the geometric curvature rather than by elastic deformation. Fortunately,
in most practical situations [31,32], spheres with relatively large curvature radii are employed,
so the effect of the membrane’s pressurized curvature can be safely neglected. In other words,
for weakly pressurized systems, the role of λp is qualitatively similar to that of λE and λT in the
microscopic-to-macroscopic transition, although λp is generally insufficient to induce a complete
transition.

5. The generalized Tabor parameter
After the separate analyses described above, we now combine all three subparameters to
demonstrate that λ serves as the unified governing parameter of the system. To this end, we
consider a series of dimensionless pretensions Tpre, pressures P and adhesion energies Γ , together
with varying geometrical parameters Rf and Rs to systematically modulate λ. Note that the
dimensionless pressure is constrained by P � β3R2

f /R
2
s to minimize the influence of the curvature

of the bulged membrane, where the curvature ratio is fixed at β = 1%. The resulting numerical
solutions are presented in figure 8. It can be seen that under various parameter settings, including
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Figure8. (a) Variationof thepull-off force for a series of parameter combinations: pretensionTpre ∈ {0, 0.01, 0.1} (represented
by circular, upper-triangular and square markers, respectively); pressure P ∈ {0, 10−6} (denoted by opaque and semi-
transparent markers); adhesion energy Γ (indicated by colour according to the accompanying colour bar); and geometric
parametersRf ∈ {20, 100} (represented by small and large markers) andRs ∈ {10, 20} (represented by unfilled and filled
markers). (b) Envelope of the numerical results shown in (a) comparedwith experimental data reported by Yu et al. [31],where L,
Rf and Rs represent the number of graphene layers, the radius of the substrate cavity and the radius of the indenter, respectively.

Γ , P, Rs, Rf and Tpre, the calculated results exhibit a smooth transition from the Bradley limit
(2πγ Rs) to the JKR-type limit (πγ Rs) as λ increases. This confirms that λ effectively captures
the combined effects of elasticity, pretension and pressure, and thus serves as the overall control
parameter governing membrane adhesion.

The envelopes of the numerical data points in figure 8a are further compared with the
experimental measurements reported by Yu et al. [31], as shown in figure 8b. In these experiments,
the pull-off forces were measured for suspended graphene membranes with different layer
numbers, two membrane radii and three indenter radii, subjected to various transverse pressures.
The pull-off force was observed to increase with applied pressure for measurements using small
indenter radii, but to remain nearly unchanged for larger indenter radii. This apparent contrast
can be rationalized by expressing the experimental data as a function of the generalized Tabor
parameter λ defined in equation (4.14), as shown in figure 8b. For large indenter radii (yellow
and orange markers), λ lies in the macroscopic domain (λ > 1), where the transition towards the
microscopic regime is limited even with increasing pressure. In contrast, for small indenter radii,
λ ranges from 0.1 to 1, corresponding to the regime in which the macroscopic-to-microscopic
transition is most pronounced. As a result, even a modest increase in pressure—and hence a
small decrease in λ—can lead to a discernible increase in the pull-off force. Note that nearly all
experimental data points fall within the envelop curves, indicating that our model demonstrates
a certain degree of accuracy in predicting pull-off forces at λ ∼ O(1).

6. Conclusion
We have discussed a unified model to elucidate the adhesion mechanics between a rigid
sphere and an elastic membrane. By systematically analysing the individual and combined
effects of the intrinsic stiffness, pretension and transverse pressure, we have identified the
underlying mechanisms that govern the transition between the microscopic (Bradley-type) and
macroscopic (JKR-type) adhesion regimes. Central to this framework is the introduction of a
generalized Tabor parameter λ, which incorporates three distinct subparameters—λE, λT and
λp—representing, respectively, the contributions from the membrane elasticity, pretension and
pressure-induced tension. It should be emphasized that this single dimensionless parameter
is physically transparent and quantitatively bridges the two limiting regimes and predicts the
continuous evolution of the pull-off force from 2πγ Rs to πγ Rs as λ increases. The model further
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captured the experimentally observed ‘stiffer-is-stickier’ behaviour of pressurized graphene
membranes [31], where the pull-off force increases with effective tension for measurements using
relatively small indenter sizes. The comparison between theoretical predictions and experimental
measurements revealed good agreement, validating the robustness and physical generality of the
proposed framework.

While the present work focuses on the membrane limit, several important directions merit
further investigation. (i) For ultrathin yet finite-thickness films, the interplay between bending
rigidity and in-plane tension may significantly alter the local contact geometry and the effective
transition parameter. Extending the current model to the Fóppl–von Kármán plate regime would
thus enable a continuous connection between plate adhesion and membrane adhesion [27,28,37].
(ii) Many practical systems exhibit viscoelastic or thermally activated behaviour, which influences
both the approach and detachment processes. Incorporating rate-dependent surface traction
laws and temperature-dependent adhesion energy would provide predictive insight into time-
dependent or hysteretic adhesion phenomena [56–59]. (iii) Realistic membranes often adhere to
rough or patterned substrates, resulting in complex contact morphologies. Extending the present
axisymmetric formulation to account for in-plane heterogeneity or multiple contact zones would
broaden the applicability of the framework to microstructured and biological interfaces [60,61].
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Appendix A. Numerical method
We employ the finite-difference method combined with the Newton–Raphson iteration method
to solve the highly nonlinear, coupled equations (4.8)–(4.13). The computational domain
R ∈ [0,Rf ] is discretized into n uniform intervals, resulting in n + 1 nodes labelled from
0 to n. The unknown quantities are represented as vectors W = (W0, W1, . . . , Wn) and Φ =
(Φ0, Φ1, . . . , Φn). Consequently, the governing equations (4.8) and (4.9) are discretized using a
central-difference scheme, yielding a system of algebraic equations fk(W, Φ) and gk(W, Φ) for
indices (k = 1, . . . , n − 1):

fk = 1
Rk

Φk+1 − Φk−1

2ΔR
Wk+1 − Wk−1

2ΔR
+ Φk

Rk

Wk+1 − 2Wk + Wk−1

ΔR2 + P

+ 8
3
ΓR2

s

(
1

(Δ + (1/2)R2
k − Wk)3

− 1

(Δ + (1/2)R2
k − Wk)9

)
= 0 (A 1)

and

gk = Φk+1 − Φk−1

2ΔR
− Φk

Rk
+ Rk

Φk+1 − 2Φk + Φk−1

ΔR2 + 1

2R2
s

(
Wk+1 − Wk−1

2ΔR

)2
= 0, (A 2)

where ΔR =Rf /n specifies the uniform grid spacing, and Rk denotes the node position with
Rn =Rf . The boundary conditions at the domain edges, coupling boundary values with interior
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nodes via equations (4.11) and (4.12), are expressed as

−3W0 + 4W1 − W2

2ΔR
= 0 and Rk

Φ0 − 2Φ1 + Φ2

ΔR2 − νΦ1 = 0 (A 3)

and

Wn = 0 and Rf
Φn−2 − 4Φn−1 + 3Φn

2ΔR
− νΦn = (1 − ν)RfTpre. (A 4)

To ensure second-order discrete accuracy, a specific backward-difference scheme is employed at
the boundary. In addition, the boundary condition for Φ at the central point is transformed into
a coupling condition at node 1. When the mesh density is sufficiently refined, this approximation
effectively captures the limiting behaviour at the centre without introducing significant errors.

The iterative process is as follows:

[
ΔW
ΔΦ

]
=
⎡
⎣ ∂f

∂W
∂f
∂Φ

∂g
∂W

∂g
∂Φ

⎤
⎦

−1 [
f
g

]
, (A 5)

where the Jacobi matrix is obtained by differentiating the algebraic expressions fk and gk with
respect to each variable. The iterative process is considered converged when the norm of the
relative step size falls a relative tolerance ε (set to be 10−8):

{n−1∑
k=1

[(
ΔWk

Wk

)2
+
(

ΔΦk

Φk

)2
]}1/2

< ε. (A 6)

Based on the calculated transverse deflection W, the external force acting on the sphere is obtained
using equation (4.13):

F = 1
2

⎡
⎣n−1∑

k=0

16
3

(Rkξk + Rk+1ξk+1)

⎤
⎦ΔR, (A 7)

where ξk = 1/(Δ + 1
2 R2

k − Wk)3 − 1/(Δ + 1
2 R2

k − Wk)9.

Appendix B. Rescaled microscopic model
Using the rescaling Ψ = ΦR2

s , the nonlinear boundary value problem defined by equations (4.8)–
(4.12) can be expressed in terms of the three subparameters λE, λT and λp as

Ψ

R
d2W
dR2 + 1

R
dΨ

dR
dW
dR

+ λ3
E

λ
3/2
p Rf

+ 8
3
λ2

E

(
1

G3 − 1
G9

)
= 0 (B 1)

and

dΨ

dR
− Ψ

R
+ R

d2Ψ

dR2 + 1
2

(
dW
dR

)2
= 0. (B 2)

The boundary conditions become

W′(0) = 0 and lim
R→0

[RΨ ′(R) − νΨ (R)] = 0 (B 3)

at the origin and

W(Rf ) = 0 and Rf Ψ
′(Rf ) − νΨ (Rf ) = (1 − ν)Rf λ

2
E/λT. (B 4)

Fortunately, after this transformation, the system is explicitly reduced from five to four controlling
parameters: λE, λT, λp and Rf .
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