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 A B S T R A C T

The indentation of thin sheets on Winkler’s mattress or elastic foundations offers valuable opportunities to gain 
quantitative insights into the mechanical properties of both the material and its interface. However, interpreting 
indentation data is complicated by the interplay of plate bending, sheet pre-tension, and foundation deforma-
tion. The challenges are further amplified in recently developed nanoindentation techniques for small-scale 
systems, such as 2D materials and cell membranes, where indenter size, shape, and foundation nonlinearity 
have been found to influence the results significantly. Here, we address these challenges by investigating a 
generalized indentation problem involving a pre-tensioned elastic sheet on a mattress foundation, considering 
both punch and spherical indenters. By linearizing the Föppl–von Kármán equations and the elastic foundation 
under small indentation depth, we obtain a set of asymptotic solutions that quantify the effects of pre-tension 
and indenter geometry on indentation stiffness. These solutions show excellent agreement with numerical 
solutions in various parameter regimes that we classify. We also discuss sources of nonlinearities arising 
from the kinematics in sheet stretching and the evolving contact radius in spherical indentation. The results 
should be of direct use for the nanometrology of layered materials where indentation remains one of the most 
accessible techniques for characterizing mechanical properties at small scales.
1. Introduction

Thin film/substrate systems are ubiquitous in nature and engi-
neering settings across different scales: from protective layers used 
to prevent wear and corrosion (Awang et al., 2019), to coatings that 
enhance the optical and thermal properties of bulk materials (Raut 
et al., 2011; Di Leo et al., 2014), and even to biological membranes 
like cell membranes that encapsulate cytoplasm (Yang and Hinner, 
2015). In recent years, small-scale thin film/substrate systems have at-
tracted particular attention due to their applications in microelectronic 
packaging (Nase et al., 2009), transistors (Zschieschang et al., 2022; 
Wang et al., 2025a), nanogenerators (Feng et al., 2018) and nanosen-
sors (Hwang et al., 2015; Li et al., 2024a). Within these applications, 
the mechanical response of the substrate-supported thin films often 
plays an important role in the design, operation, and functionality of 
the system (Freund and Suresh, 2004). To test such responses, inden-
tation experiments have been developed as one of the most important 
techniques due to their in-situ, non-destructive nature (see the review 
by Cao and Gao, 2019). For example, with well-developed atomic 
force microscopy (AFM), one can obtain highly resolved indentation 
force–displacement curves, which can provide valuable opportunities 
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to quantify the mechanical properties of thin films and their interfaces 
with the supporting substrate (Zhang et al., 2018; Yu and Dai, 2024).

Although the mechanics of film/substrate indentation have been 
extensively studied in various configurations and material laws (Bhat-
tacharya and Nix, 1988; Freund and Suresh, 2004), recent cutting-edge 
experiments on 2D materials and cell membranes have introduced 
new factors to be explored (Gao et al., 2015, 2018; Cellini et al., 
2018; Mandriota et al., 2019). A notable example is depicted in Fig. 
1a, where few-layer graphene sheets rest on a SiC substrate with a 
separation of only a few angstroms (Gao et al., 2015; Wang et al., 
2025b). This equilibrium spacing is governed by the van der Waals 
(vdW) forces acting between the sheet and the substrate (Israelachvili, 
2011). In these experiments, the indentation depth is kept well below 
the equilibrium spacing, ensuring that the work done by the indentation 
load is mainly stored as elastic energy within the sheet and as vdW 
potential at the sheet–substrate interface (Gao et al., 2015, 2018). As 
a result, the problem becomes an elastic sheet resting on a nonlinear 
elastic foundation given by the vdW interactions. Another example, 
shown in Fig.  1b, involves an indentation applied to a tensioned cell 
membrane supported by a layer of spring-like cytoplasm (Mandriota 
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Fig. 1. (a) Experimental indentation curves in bilayer epitaxial Graphene (red), and SiC (black) (Source: Gao et al., 2018). The inset shows the schematic illustration of the 
contact model assumed in this angstrom-indentation method (Source: Cellini et al., 2018). (b) Effective elastic modulus (superimposed to the surface topography) acquired from the 
indentation of human umbilical vein endothelial cells. The inset illustrates the cellular indentation model, where the green surface represents the tensioned fibroblast cell cortex 
and the springs denote the elastic response of the cytoplasm layer under the cortex (Source: Mandriota et al., 2019).
et al., 2019). In both cases, the indentation force–depth curves can 
be readily measured; however, a key challenge is understanding what 
governs the indentation force–depth relation for an elastic sheet on a 
(nonlinear) foundation.

In the indentation experiments presented in Fig.  1, the nonlinear 
response of thin sheets introduces significant challenges in accurately 
interpreting the indentation data (Mansfield, 1989). Furthermore, a 
range of experimental factors must be carefully accounted for, includ-
ing foundation nonlinearity, indenter geometry and size, as well as the 
ubiquitous presence of pre-tension in substrate-supported sheets, such 
as in-plane tension in cell cortices and residual stress in transferred 
2D materials (Dai et al., 2019, 2020). These complexities markedly 
constrain the applicability of existing contact models for indenting 
elastic films on elastic slabs (Barber, 2018; Ding et al., 2023; Yuan 
et al., 2023). When both material response and elastic foundation are 
linearized, however, the system resembles plates on Winkler founda-
tions or thin coatings (Chandler and Vella, 2020b), where indenta-
tion solutions have been extensively analyzed under various loading 
conditions (for a comprehensive review, see Dillard et al., 2018). 
Recent studies on pre-tensioned thin sheets floating on water (see 
Box et al., 2017) have further considered the geometrical nonlinear-
ity in elastic sheets under point loading. Nonetheless, in small-scale 
experiments (e.g., Gao et al., 2018; Mandriota et al., 2019), even a 
probe size of just a few nanometers can significantly affect indentation 
results (Chandler and Vella, 2020a). A quantitative understanding of 
how sheet elasticity, indenter geometry, size, and pre-tension affect 
experimental outcomes is essential, yet remains underexplored in the 
literature. As a result, prior experiments (such as Gao et al., 2015, 
2018; Mandriota et al., 2019) have been interpreted using approximate 
models that neglect many of these subtleties—an approach not yet fully 
justified.

This work aims to elucidate the indentation force–depth relations 
for a elastic film on a nonlinear foundation, with a particular focus 
on how the indentation stiffness relates to the sheet’s mechanical 
properties, pre-tension, and indenter geometry. We present several 
new asymptotic solutions that could be useful in interpreting previous 
experiments. The paper is structured as follows: In Section 2, we intro-
duce the governing equations and nondimensionalization to describe 
the indentation of films on foundations, along with a brief review 
of indentation stiffness for point loading. In Section 3, we examine 
angstrom-scale indentation of 2D materials as a case study to explore 
the analytical expression and asymptotic behavior of the indentation 
stiffness for a cylindrical indenter, quantifying the influence of film 
pre-tension and indenter radius. We also discuss the conditions under 
which geometric nonlinearity arises and assess the applicability of 
our linearized theory. In Section 4, we examine indentation behavior 
for a spherical indenter and several asymptotic results under small 
2

Fig. 2. Schematic illustration of the indentation of an elastic sheet on a linear, elastic 
foundation of stiffness of 𝐾sub discussed in Section 2.1.2. The source of the linear 
foundation could be water (Box et al., 2017), thin compressible substrate (Dillard et al., 
2018), or linearized vdW interactions (Gao et al., 2014).

indentation depth. In Section 5, we develop an equivalent method to 
calculate indentation stiffness for multilayer structures under punch 
loading. Finally, Section 6 provides a summary and conclusions of our 
work.

2. The generalized model

In this section, we present a generalized indentation model for 
thin sheets on elastic foundations that are consistent with previous 
experimental settings (Gao et al., 2018; Mandriota et al., 2019). To 
facilitate analytical progress, we adopt a linearized Winkler foundation 
model (Dillard et al., 2018; Kerr, 1964) and examine the indentation 
response of the system by focusing on small loads.

2.1. Theoretical setting

2.1.1. Governing equations
We consider an elastic sheet with Young’s modulus 𝐸, thickness 

𝑡, and bending stiffness 𝐵, resting on an elastic foundation, as illus-
trated in Fig.  2. In the context of geometric nonlinearity and Kirchhoff 
assumptions, we use axisymmetric Föppl–von Kármán equations to 
describe the vertical deflection 𝑤 of the sheet, where upward dis-
placement is defined as positive (Mansfield, 1989). The first equation 
introduces the vertical equilibrium: 

𝐵∇𝑟
2∇𝑟

2𝑤 − 1
𝑟
d
d𝑟

(

d𝜑
d𝑟

d𝑤
d𝑟

)

+ 𝑞 = −𝑓 (𝑟), (2.1)

where ∇2
𝑟𝑔 = d2𝑔

d𝑟2 + 1
𝑟
d𝑔
d𝑟  is the 2D axisymmetric Laplacian. In Eq. (2.1), 

𝑞 represents the restoring force from the substrate, which is explained 
in detail in Section 2.1.2. Given that we only solve for the film de-
formation outside the contact edge 𝑟 = 𝑎, the force exerted by the 
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indenter can be thus expressed as: 𝑓 (𝑟) = 𝐹𝛿(𝑟−𝑎)
2𝜋𝑟 , where 𝛿 (𝑟) is a Dirac 

delta function and 𝐹  is the total indentation force. Also, we use Airy 
stress function 𝜑 with 𝑁𝑟 =

1
𝑟
d𝜑
d𝑟 and 𝑁𝜃 = d2𝜑

d𝑟2  so that the in-plane 
equilibrium equation is automatically satisfied, leading to the strain 
compatibility equation as: 
1
𝐸𝑡

∇2
𝑟∇

2
𝑟𝜑 = −1

𝑟
d
d𝑟

[

1
2

(d𝑤
d𝑟

)2]

. (2.2)

To solve Eqs. (2.1) and (2.2), a total of seven boundary conditions 
are required since Eq.  (2.2) can usually be integrated once. Clearly, 
at infinity, the thin film returns to its initial state, unaffected by the 
indentation. Therefore, we have far-field boundary conditions as: 

𝑤, d𝑤
d𝑟

→ 0 and 𝜑 →
1
2
𝛾𝑟2 as 𝑟 → ∞, (2.3)

where 𝛾 represents the pre-tension in the sheets, which could arise 
from residual stress in 2D material systems or surface tension in sheets 
floating on water (Box et al., 2017; Dai et al., 2020). The boundary 
conditions at the contact edge 𝑟 = 𝑎 need to be determined based on 
the particular geometry of the indenter.

2.1.2. Winkler’s mattress model
The coating problems on elastic half-spaces have been extensively 

studied (Liu et al., 2019; Box et al., 2020). For our problem involving 
elastic thin layers and indentation of 2D materials, we will instead 
exploit the Winkler’s mattress model (Winkler, 1867), originating from 
studies in civil engineering structures. The core concept of this model is 
that the restoring force is proportional to the local displacement, e.g. 
𝑞 = 𝐾sub𝑤. (2.4)

The linearized foundation, with stiffness denoted as 𝐾sub, resembles 
a layer of uncoupled springs, as illustrated in Fig.  2. Physically, this 
linear foundation model can represent interactions such as a water 
foundation (Box et al., 2017), a thin (transversely) isotropic compress-
ible elastomer (Dillard et al., 2018; Li et al., 2024b; Li and Dai, 2025), 
or linearized vdW forces (Zhang and Witten, 2007; Ares et al., 2021; 
Dai et al., 2022).

2.2. Nondimensionalization

We then introduce the dimensionless variables that will be used 
throughout the paper. Although the characteristic scale 𝑤∗ in the 
vertical direction is not clear at this moment, the horizontal length scale 
can be described by the Winkler length (Dillard et al., 2018): 
𝓁∗ =

(

𝐵∕𝐾sub
)1∕4 . (2.5)

The following nondimensionalization is then applied: 

𝑊 = 𝑤
𝑤∗

, 𝑅 = 𝑟
𝓁∗

, 𝛷 =
𝜑
𝐵
,  =

𝐹𝓁2
∗

𝐵𝑤∗
, 𝜏 =

𝛾𝓁2
∗

𝐵
, 𝜂 = 𝑎

𝓁∗
. (2.6)

The governing equations outside the contact region 𝑅 ≥ 𝜂 then become: 

1
𝑅

d
d𝑅

{

𝑅 d
d𝑅

[ 1
𝑅

d
d𝑅

(

𝑅 d𝑊
d𝑅

)]}

− 1
𝑅

d
d𝑅

( d𝛷
d𝑅

d𝑊
d𝑅

)

+𝑊 = 0 (2.7)

and 

𝑅 d
d𝑅

[ 1
𝑅

d
d𝑅

(

𝑅 d𝛷
d𝑅

)]

+
( d𝑊
d𝑅

)2
= 0, (2.8)

subject to far-field conditions: 
𝑊 (𝑅) → 0, 𝑊 ′(𝑅) → 0, and 𝛷(𝑅) → 𝜏𝑅2∕2, as 𝑅 → ∞. (2.9)

As a result, the only physical parameter in this problem is given by the 
Föppl–von Kármán number (Blees et al., 2015) 
 = 𝐸𝑡𝑤∗

2∕2𝐵, (2.10)

which quantifies the relative rigidity of bending compared to stretching 
in the sheet. A higher  indicates that the sheet bends more readily 
3

than it stretches, and vice versa.  appears only in the compatibility 
equation, suggesting that it has minimal influence for small deflections. 
It is worth noting that under prescribed indentation depth 𝑑, the 
indentation force becomes part of the solution. For point indentation, 
indentation force can be easily calculated via the shear force balance 
around 𝑅 = 0, i.e., 

 = −2𝜋 lim
𝑅→0

𝑅 d
d𝑅

[ 1
𝑅

d
d𝑅

(

𝑅d𝑊
d𝑅

)]

. (2.11)

We use standard boundary value problem solvers, such as bvp4c in
Matlab, to solve the problem specified in Eqs. (2.7) to (2.11). In the 
following text, we refer to these computed results as the ‘‘numerical 
solutions’’.

2.3. The solution of Box et al. (2017)

Eqs. (2.7) to (2.11) can be used to describe the problem of point 
indentation of an elastic sheet floating on a water surface, which has 
been analytically solved for small indentation depths by Box et al. 
(2017). Below, we briefly outline this solution. For point loading (𝜂 =
0), the inner boundary condition is: 

𝑊 (0) = −𝛿, 𝑊 ′ (0) = 0, 𝑢(0) = lim
𝑅→0

[

𝛷′′ (𝑅) − 𝜈
𝛷′ (𝑅)
𝑅

]

= 0, 𝛷 (0) = 0,

(2.12)

where 𝛿 = 𝑑∕𝑤∗ is the prescribed indentation depth, 𝑢(𝑟) represents the 
radial displacement field within the sheet, and the value of 𝛷 at 𝑟 = 0
could be arbitrary (since only its derivative is physically meaningful). 
When the indentation depth is small, Box et al. (2017) considered 
a linear perturbation for the Airy stress function of the original pre-
tensioned 𝛷 = 𝜏𝑅2∕2 + 𝛷̃ with |𝛷̃| ≪ 𝜏𝑅2. The leading-order term of 
Eqs. (2.7) and (2.8) reads 
∇4
𝑅𝑊 − 𝜏∇2

𝑅𝑊 +𝑊 = 0. (2.13)

with boundary conditions in Eqs. (2.9) and (2.12), the solution to 
Eq. (2.13) was obtained: 

𝑊 = − 2𝛿
ln
(

𝜆−∕𝜆+
)

[

𝐾0
(

𝜆+
1∕2𝑅

)

−𝐾0
(

𝜆−
1∕2𝑅

)]

, (2.14)

where 𝐾𝑛(𝑟) is the modified Bessel function of 𝑛th order and 𝜆± = (𝜏 ±
√

𝜏2 − 4)∕2. The indentation force could be calculated with Eq. (2.11), 
leading to a indentation stiffness: 

𝐾𝑝 =

𝛿

= 2𝜋

(

𝜏2 − 4
)1∕2

arc tanh
[

(

1 − 4∕𝜏2
)1∕2

] ∼
{

8, 𝜏 ≪ 1
2𝜋𝜏∕ln 𝜏, 𝜏 ≫ 1

, (2.15)

which is Eq.(4.13) in Box et al. (2017).

2.4. Implications and extensions

Interestingly, Eq. (2.13) can also describe the indentation problem 
of a plate on a Pasternak foundation (Kerr, 1964), where the restoring 
force of substrate is given by 
𝑞(𝑤) = 𝐾sub𝑤 − 𝐺𝑝∇2𝑤, (2.16)

with 𝐾sub and 𝐺𝑝 determined by the elastic modulus and thickness 
of the substrate (Argatov et al., 2015). In this context, 𝜏 in Eq. (2.6) 
should be redefined as (𝛾 + 𝐺𝑝)∕𝓁2

∗𝐵, in which the term involving 𝐺𝑝
can be used to account for the deviatoric deformation in the substrate—
a crucial factor when the substrate becomes incompressible (Dillard 
et al., 2018; Chandler and Vella, 2020b; Hao et al., 2024). In other 
words, by appropriately modifying the pre-tension, the indentation 
model and analytical approach based on the Winkler foundation can 
also be applied to higher-order substrate theories, thereby enhancing 
the versatility of the model.
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Fig. 3. (a) Dimensionless indentation force–depth curve of punch indentation (the dimensionless punch radius 𝜂 = 5) on a van der Waals foundation. The inset shows the normalized 
deformation profile of the thin sheet (calculated at 𝛿 = 0.01). (b) The ratio of two stiffness components 𝐾out∕𝐾in (see the definition in Eqs. (3.10) and (3.11)) as a function of the 
dimensionless indenter radius. Since 𝐾in ∝ 𝜂2, the transition in scaling behavior indicates that 𝐾out changes from independent of the indenter radius to linearly dependent on it.
In addition to small indentation depths, a key assumption for the 
validity of Eq. (2.15) is that the indenter size, 𝑟in, must be much smaller 
than the characteristic horizontal length, 𝓁∗. However, as demonstrated 
in the experiments reported in Gao et al. (2015, 2018), Cellini et al. 
(2018), Mandriota et al. (2019), the ratio 𝑟in∕𝓁∗ can reach up to 𝑂(10), 
making the effect of both the size and shape of the indenter signif-
icant. Additionally, pre-tension introduces an additional length scale 
(alongside the Winkler-type length), further complicating the influence 
of indenter size and shape. In the rest of this paper, we address these 
complexities and discuss the conditions under which the system can be 
effectively linearized.

3. Punch indentation with van der Waals foundations

In this section, we discuss the problem of punch indentation based 
on linearized van der Waals interactions with the substrate. In this 
problem, the contact area is known and does not vary with the in-
dentation depth, which is also known as ‘‘conformal contact’’ (Barber, 
2018). This allows us to focus on the asymptotic behavior and physical 
implications of the solutions.

3.1. Van der Waals foundation

Inspired by indentation experiments where 2D material sheets ad-
here to a rigid substrate through van der Waals forces (Gao et al., 2015, 
2018; Cellini et al., 2018), we extend the linear foundation in Eq. (2.7) 
to incorporate the lateral force 𝑞 in (2.1) contributed by nonlinear vdW 
interactions. Specifically, by integrating the intermolecular Lennard-
Jones potential, the vdW interaction can be written as a function of 
the film deflection (Israelachvili, 2011): 

𝑞(𝑤) = 8𝛤
3𝜎

[

1
(𝑤∕𝜎 + 1)3

− 1
(𝑤∕𝜎 + 1)9

]

, (3.1)

where 𝛤  is the adhesion energy and 𝜎 is the equilibrium separation 
between the sheet and the substrate (Yu et al., 2025). Note that 
under small deflections, the linearization of Eq.  (3.1) yields a Winkler 
foundation response: 

𝑞 = 𝐾vdW𝑤 and 𝐾vdW =
d𝑞
d𝑤

|

|

|

|𝑤=0
= 16𝛤

𝜎2
. (3.2)

Similar equivalent stiffness of vdW interactions has also been used in 
studies of winkling instabilities (Zhang and Witten, 2007; Davidovitch 
and Guinea, 2021; Ares et al., 2021; Dai et al., 2022), and graphene 
blistering under small deflections (Wang et al., 2016). Thus, in the con-
text of vdW foundation, the rescaling process discussed in Section 2.2 
4

can be simply proceeded by updating the 𝐾sub with 𝐾vdW given in 
Eq. (3.2) and replacing 𝑤∗ with 𝜎:

𝑊 = 𝑤
𝜎
, 𝛿 = 𝑑

𝜎
, 𝑅 = 𝑟

𝓁vdW
, 𝛷 =

𝜑
𝐵
,  = 𝐹

4
√

𝛤𝐵
,

𝜏 =
𝛾𝜎

4
√

𝛤𝐵
, 𝓁∗ = 𝓁vdW =

(

𝐵𝜎2

16𝛤

)1∕4
,  = 𝐸𝑡𝜎2

2𝐵
.

(3.3)

Now the compatibility Eq. (2.8) holds while the equilibrium equations 
becomes
1
𝑅

d
d𝑅

{

𝑅 d
d𝑅

[ 1
𝑅

d
d𝑅

(

𝑅d𝑊
d𝑅

)]}

− 1
𝑅

d
d𝑅

(d𝛷
d𝑅

d𝑊
d𝑅

)

+ 1
6

[

1
(𝑊 + 1)3

− 1
(𝑊 + 1)9

]

= 0. (3.4)

It may be worth noting that for monolayer 2D materials,  can be 
extremely large, ranging from 100 to 1000 as they resist stretching by 
the strong in-plane covalent bonds and bending by a different physical 
origin, i.e., weak out-of-plane 𝜋 bonds (Wang et al., 2019; Dai and Lu, 
2021).

3.2. Punch indentation

We now consider a punch indentation as illustrated in Fig.  2. The 
far-field boundary conditions in Eq. (2.9) remain applicable, while the 
inner boundary conditions at the periphery of the indenter (i.e., at 
𝑅 = 𝜂 = 𝑟in∕𝓁vdW) are given by 

𝑊 (𝜂) = −𝛿, 𝑊 ′ (𝜂) = 0, 𝛷′′ (𝜂) − 𝜈
𝛷′ (𝜂)
𝜂

= (1 − 𝜈) 𝜏, 𝛷 (0) = 0,

(3.5)

In Eq. (3.5), the third equation specifies that the radial displacement at 
𝑅 = 𝜂 is purely caused by pre-tension before indentation, corresponding 
to a no-slip indenter tip. In fact, even a perfect-slip indenter has no 
impact on the indentation stiffness at small indentation depths, as the 
linearized governing equation can be solved using only the boundary 
conditions related to 𝑊 . The numerical solutions to Eqs. (3.4) and (2.8) 
subject to Eqs. (3.5) and (2.9) for 𝜂 = 5 and various pre-tention 𝜏 are 
presented as solid curves in Fig.  3.

At small indentation depths, the linearization of Eq. (3.4) still gives 
rise to Eq. (2.13). We solve this analytically with boundary condi-
tions (2.9) and (3.5), obtaining the deformation profile of the sheet 
undergoing punch indentation: 
𝑊 (𝑅) = 𝐶 𝐾

(

𝜆1∕2𝑅
)

+ 𝐶 𝐾
(

𝜆1∕2𝑅
)

, (3.6)
1 0 + 2 0 −
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In Eq. (3.6), 𝐶1 and 𝐶2 are constants that can be determined by 
boundary conditions (3.5). Specifically,

𝐶1 =
𝐾1−𝜆1∕2− 𝛿

𝐾0−𝐾1+𝜆
1∕2
+ −𝐾0+𝐾1−𝜆

1∕2
−

, and

𝐶2 =
𝐾1+𝜆

1∕2
+ 𝛿

𝐾0+𝐾1−𝜆
1∕2
− −𝐾0−𝐾1+𝜆

1∕2
+

,

(3.7)

here 𝐾0+ = 𝐾0

(

𝜆1∕2+ 𝜂
)

, 𝐾0− = 𝐾0
(

𝜆1∕2− 𝜂
)

, 𝐾1+ = 𝐾1

(

𝜆1∕2+ 𝜂
)

, 𝐾1− =
𝐾1

(

𝜆1∕2− 𝜂
)

. We can then calculate the indentation force by integrating 
the restoring force of the entire substrate: 
 = in + out , (3.8)

where the net force underneath the indenter reads in = 2𝜋 ∫ 𝜂
0 𝛿𝑅 d𝑅, 

and the net force outside of the contact region reads out = −2𝜋 ∫ ∞
𝜂 𝑊

(𝑅)𝑅 d𝑅. Obviously, such an integration reveals a linear force–displ
acement relationship (since 𝐶1 and 𝐶2 are linearly proportional to 𝛿). 
We then have the corresponding indentation stiffness contributed by 
two regions: 
𝐾 = 𝐾out +𝐾in, (3.9)

Obviously, the stiffness due to the compression of the vdW foundation 
underneath the punch is given by 
𝐾in = 𝜋𝜂2, (3.10)

and the stiffness due to the deflection of the sheet outside of the contact 
region is given by 

𝐾out = −2𝜋𝜂
(

𝐶1𝜆
−1∕2
+ 𝐾1+ + 𝐶2𝜆

−1∕2
− 𝐾1−

)

∕𝛿. (3.11)

Fig.  3a shows the comparison between analytical (dashed curves) 
and numerical (solid curves) results regarding the deformed profile of 
the sheet and the indentation force–depth relation. The color of solid 
curves represents different values of pre-tension. It is clear that the 
linearized equations (3.6) and (3.8) effectively capture the mechanical 
behavior of the system at small indentation depths (i.e., 𝛿 ≪ 1). Fig. 
3b shows the relationship between 𝐾out∕𝐾in (as defined in Eqs. (3.10) 
and (3.11)) and the dimensionless indenter radius 𝜂 across different 
levels of pre-tensions. Interestingly, at small pre-tensions, the following 
transition can be observed with the increase of the dimensionless 
indenter size: 
𝐾out∕𝐾in ∼ 𝜂−2 → 𝐾out∕𝐾in ∼ 𝜂−1. (3.12)

However, this transition is hardly observed at large pre-tensions, sug-
gesting that the effects of pre-tension and indenter size are indeed 
coupled. We therefore turn to clarify the dependence of the indentation 
stiffness on the indenter size and pre-tension via a regime diagram.

3.3. A regime diagram

We then attempt to provide the parametric phase diagram illustrat-
ing the effects of the indenter radius and pre-tension on indentation 
stiffness. This task is complicated by the characteristic lengths of the 
system that can be eventually changed by pre-tension.

3.3.1. Horizontal length scales
The complex dependence of the indentation stiffness on indenter 

size and pre-tension in Fig.  3b suggests that additional length scales, 
beyond 𝓁vdW in Eq. (3.3), may be influential. To examine this further, 
we revisit the dimensional form of the linearized equation (3.4): 
𝐵∇4

𝑟𝑤 − 𝛾∇2
𝑟𝑤 +𝐾vdW𝑤 = 0, (3.13)

where the three terms on the LHS correspond to the bending term, 
pre-tension term, and term of the substrate restored force, respec-
tively. From Eq.  (3.13), we naturally consider three limiting regimes: 
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(i) Bending-dominated regime. Comparing the first and third terms 
(𝐵∕𝓁4

𝐵 ∼ 𝐾vdW), we obtain a ‘‘bending characteristic length’’ of a plate 
on a Winker foundation: 𝓁𝐵 = (𝐵∕𝐾vdW)1∕4 (which is 𝓁vdW we have been 
using in the preceding discussion). (ii) Pretension-dominated regime. 
Comparing the second and third terms (𝛾∕𝓁2

𝛾 ∼ 𝐾vdW), we obtain a 
‘‘pre-tension characteristic length’’ of the system: 𝓁𝛾 = (𝛾∕𝐾vdW)1∕2. (iii) 
Regime of comparable bending and pre-tension effect. Comparing the 
first two terms, we obtain a ‘‘bending-pretension characteristic length’’: 
𝓁𝐵𝛾 = (𝐵∕𝛾)1∕2, which also balances the bending energy and stretching 
energy due to pre-tension. These three characteristic lengths describe 
the competition between three distinct physical ingredients. We now 
analyze their relative importance in different positions and how they 
relate to the indentation stiffness.

As shown in Fig.  2 and the inset of Fig.  3a, the indentation profile 
of the sheet can be roughly divided into two regions with opposite 
curvatures. (a) In the area close to the indenter, there is a boundary 
layer with upward curvature due to the finite bending stiffness of 
the elastic sheet. We denote the horizontal length of this ‘‘boundary 
layer’’ as 𝓁in, and the vertical length as 𝑑in. (b) In the area outside 
the boundary layer (hereinafter referred to as the ‘‘outer annulus’’), 
the curvature of the film turns downward. We denote the horizontal 
length of the outer annulus as 𝓁out , and its vertical length as 𝑑out . For 
small indentation depth, we assume that the two parts have self-similar 
shapes, allowing us to relate the characteristic scales in the horizontal 
and vertical directions via 

𝑑in =
𝓁in

𝓁in + 𝓁out
𝑑, and 𝑑out =

𝓁out
𝓁in + 𝓁out

𝑑. (3.14)

When there is no pre-tension: 𝓁in ∼ 𝓁out ∼ 𝓁𝐵 . As pre-tension increases, 
the influence of bending diminishes, though at different rates in the 
boundary layer and outer annulus. For instance, in the limiting case 
of very high pre-tension, the bending stiffness in the outer annulus 
can be considered negligible, while bending remains significant within 
the boundary layer. Thus, when estimating the characteristic length 
scale, the interaction between bending stiffness and pre-tension must be 
consistently considered. This leads to the selection of the characteristic 
lengths as follows: 

𝓁in ∼ min
{

𝓁𝐵𝛾 ,𝓁𝐵
}

and 𝓁out ∼ max
{

𝓁𝛾 ,𝓁𝐵
}

(3.15)

3.3.2. Small pre-tensions (𝜏 ≪ 1)
When the dimensionless pre-tension 𝜏 is small (𝜏 ≪ 1) , its dimen-

sional form reads 𝛾 ≪
√

𝐵𝐾vdW. This reveals the magnitudes of the 
three characteristic lengths discussed in Section 3.3.1: 

𝓁𝛾 ≪ 𝓁𝐵 ≪ 𝓁𝐵𝛾 . (3.16)

According to Eqs.  (3.14) and (3.15), we have: 

𝓁in ∼ 𝓁out ∼ 𝓁𝐵 and 𝑑in ∼ 𝑑out ∼ 𝑑. (3.17)

Eq. (3.17) suggests a bending-dominated indentation behavior, en-
abling us to analyze 𝑘out (dimensional form of 𝐾out defined in (3.11)) 
from an energy perspective. In particular, when the indenter radius is 
much smaller than the characteristic scale of the system (i.e., 𝑟in ≪ 𝓁𝐵), 
the balance between the work done by the external force and the stored 
strain energy gives: 

𝑘out𝑑
2 ∼ 𝓁2

in𝐵

(

𝑑in
𝓁2
in

)2

+ 𝓁2
out𝐵

(

𝑑out
𝓁2
out

)2

∼
√

𝐵𝐾vdW𝑑2, (3.18)

where 𝑑∕𝓁2 is the characteristic curvature 𝜅 of the sheet, and 𝓁2
in and 

𝓁2
out represent the estimation of the area of the boundary layer and outer 
annulus, respectively. Eq. (3.18) also tells us 𝐾out ∼ 1, independent of 
indenter radius and pre-tension. Note that this conclusion can also be 
drawn by considering the energy stored in the foundation scaling as 
𝐾 𝓁2 𝑑2 ∼

√

𝐵𝐾 𝑑2.
vdW 𝐵 vdW



International Journal of Solids and Structures 315 (2025) 113346E. Chen and Z. Dai
Fig. 4. The outer stiffness 𝐾out in the parameter regime (dimensionless pre-tension 
𝜏, dimensionless indenter radius 𝜂). The colored areas reveal different asymptotic 
behaviors of 𝐾out , and the light area represents the transition area that has been 
numerically verified, where the asymptotic results may exhibit some inaccuracies.

In contrast, when 𝑟in ≫ 𝓁𝐵 , the sizes of the boundary layer and outer 
annulus should be re-examined: 

𝑘out𝑑
2 ∼ 𝑟in𝓁in𝐵

(

𝑑in
𝓁2
in

)2

+ 𝑟in𝓁out𝐵

(

𝑑out
𝓁2
out

)2

∼ 𝑟in𝐵
1∕4𝐾3∕4

vdW𝑑2, (3.19)

which suggests 𝐾out ∼ 𝜂. As a reference, we rigorously deduced the 
asymptotic behaviors of 𝐾out based on Eq. (3.11), which indeed gives: 

𝐾out ∼

{

8, for 𝜂 ≪ 1
2
√

2𝜋𝜂, for 𝜂 ≫ 1
, (3.20)

which is further illustrated in the regime diagram in Fig.  4 (i.e., the 
two blocks on the bottom).

3.3.3. Large pre-tensions (𝜏 ≫ 1)
Similarly, when the elastic sheet undergoes a large pre-tension: 

𝜏 ≫ 1 (i.e., 𝛾 ≫
√

𝐵𝐾vdW), the three characteristic scales show the 
reverse order: 
𝓁𝛾 ≫ 𝓁𝐵 ≫ 𝓁𝐵𝛾 , (3.21)

which leads to an estimation according to Eqs. (3.14) and (3.15): 

𝓁in ∼ 𝓁𝐵𝛾 , 𝓁out ∼ 𝓁𝛾 , 𝑑in ∼
𝓁𝐵𝛾
𝓁𝛾

𝑑, 𝑑out ∼ 𝑑. (3.22)

In this case, the energy contributions from bending and pre-tension are 
comparable in the boundary layer, while the energy due to pre-tension 
dominates over the bending energy in the outer annulus. Therefore, 
when the radius of the indenter is much smaller than the minimum 
characteristic length of the system (i.e., 𝑟in ≪ 𝓁𝐵𝛾 or 𝜏 ≪ 𝜂−2 in 
dimensionless form), we can estimate 𝑘out by considering 

𝑘out𝑑
2 ∼ 𝓁2

in𝛾
𝑑2in
𝓁2
in

+ 𝓁2
out𝛾

𝑑2out
𝓁2
out

∼

[

1 +
(𝓁𝐵𝛾

𝓁𝛾

)2]

𝛾𝑑2, (3.23)

where (𝑑∕𝓁)2 is the indentation-induced strain in the sheet. Ignoring 
the effect of the boundary layer (as its effect has become secondary), 
we obtain 𝐾out ∼ 𝜏. When the radius of the indenter is much greater 
than the maximum characteristic length of the system (i.e., 𝑟in ≫ 𝓁𝛾 or 
𝜏 ≫ 𝜂2), we instead have 

𝑘out𝑑
2 ∼ 𝑟in𝓁in𝛾

𝑑2in
2
+ 𝑟in𝓁out𝛾

𝑑2out
2

∼
𝑟in𝛾

(

1 +
𝓁𝐵𝛾

)

𝑑2, (3.24)
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𝓁in 𝓁out 𝓁𝛾 𝓁𝛾
which implies 𝐾out ∼ 𝜂
[

√

𝜏 + 1∕
√

𝜏
]

. Similarly, using the properties of 
the Bessel function, we can obtain the asymptotic solution of Eq. (3.11) 
under large pre-tensions: 

𝐾out ∼

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2𝜋 𝜏
ln 𝜏 , for 𝜂 ≪ 𝜏−1∕2

2𝜋 𝜏
ln
(

√

𝜏∕𝜂
) , for 𝜏−1∕2 ≪ 𝜂 ≪ 𝜏1∕2

2𝜋𝜂
[

1
√

𝜏
+
√

𝜏
]

, for 𝜂 ≫ 𝜏1∕2,

(3.25)

which is shown in the regime diagram in Fig.  4 (see the top three 
blocks).

3.3.4. A summary of 𝜏 and 𝜂 dependence
The diagram in Fig.  4 divides the (𝜂, 𝜏) space into five regimes, il-

lustrating the asymptotic expressions of 𝐾out under different parameter 
combinations. To further verify this regime diagram, we show in Fig. 
5a the evolution of 𝐾out as a function of pre-tension 𝜏 with different 
indenter radius 𝜂. With small indenter radii (𝜂 ≪ 1), as the pre-tension 
increases, the outer stiffness initially exhibits an asymptotic behavior 
that is nearly identical to that of a point indenter. With further increases 
in pre-tension, the influence of the indenter size 𝜂 will eventually 
manifest through a logarithmic correction. With large indenter radii, as 
the pretension increases, the external stiffness approximately exhibits 
the following scaling transitions: 𝐾out ∼ 𝜏0 → 𝜏1∕2 → 𝜏. Fig.  5b further 
shows the evolution of 𝐾out as a function of the indenter radius 𝜂
with different pre-tension 𝜏. At small pre-tensions, with the increase in 
indenter radius, the outer stiffness undergoes a transition from being 
independent of 𝜂 to finally linearly dependent on 𝜂, regardless of 
the pre-tension level. However, at large pre-tensions, there exists an 
intermediate regime where the stiffness logarithmically depends on the 
indenter radius. The ‘‘size’’ of this intermediate regime expands with 
increasing pre-tension. This explains the power-law transition observed 
in Fig.  3b and why this transition is hardly seen at large pre-tensions.

In summary, when 𝜏 ≪ 1, the effect of pretension on the indentation 
stiffness can be safely ignored; however, careful consideration of the 
indenter radius is necessary unless 𝑟in∕𝓁𝐵 ≪ min

{

𝜏−1∕2, 1
}

. In typical 
2D material experiments (such as in Gao et al., 2015, 2018; Cellini 
et al., 2018), we may take 𝜎 = 0.6 nm, 𝛤 = 0.1 J∕m2, 𝐵 = 1.5 eV (Wang 
et al., 2016). Under these conditions, 𝓁𝐵 ≈ 0.48 nm (indicating a 
significant effect of indenter size for probes only a few nanometers 
large), and the corresponding pre-tension for 𝜏−1∕2 ∼ 1 is 𝛾 ≈ 1.03 N∕m.

3.4. Nonlinearities

The indentation stiffness for cylindrical indenters is derived above 
using the linearized Eq. (2.13). These results significantly simplify 
the interpretation of experimental data, facilitating the extraction of 
material and foundation properties. However, it is essential to clearly 
define its applicability to avoid potential pitfalls.

We first examine the emergence of geometric nonlinearity due to 
indentation-induced strain in the sheet, again from an energy per-
spective (Chen and Dai, 2023; Dai, 2024). When 𝜏 ≪ 1 (i.e., in the 
bending-dominated regime), the strain energy in the boundary layer 
and the outer annulus are comparable. For the bending energy to be 
comparable to the induced stretching energy, the indentation depth 
must satisfy: 

𝐵

(

𝑑
𝓁2
𝐵

)2

∼ 𝐸𝑡
(

𝑑
𝓁𝐵

)4
⇒ 𝑑𝑐 ∼ (𝐵∕𝐸2𝐷)1∕2. (3.26)

The corresponding dimensionless depth is thus 𝛿𝑐 ∼ −1∕2. When 
𝜏 ≫ 1 (i.e., in the pretension-dominated regime), the energy in the 
boundary layer is proportional to that in the outer annulus (as shown 
in Eqs. (3.23) and (3.24)). Considering only the energy balance in the 
outer annulus, we obtain 

𝛾
(

𝑑
)2

∼ 𝐸𝑡
(

𝑑
)4

⇒ 𝑑𝑐 ∼
(

𝛾2
)1∕2

, (3.27)

𝓁𝛾 𝓁𝛾 𝐾sub𝐸2𝐷
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Fig. 5. (a) The evolution of outer stiffness 𝐾out as a function of pre-tension 𝜏 with different indenter radius 𝜂. (b) The evolution of outer stiffness 𝐾out as a function of indenter 
radius 𝜂 with different pre-tension 𝜏. The black solid curves represent the complete indentation stiffness expression given in Eq. (3.11), and the dashed curves of different colors 
represent the asymptotic expressions reflected in the corresponding parameter regime in the inset.
Fig. 6. (a) Indentation force–depth relationship of point loading with nonlinear van der Waals foundation. (b) Apparent stiffness ∕𝛿 as a function of indentation depth. The flat 
portion of the curve with zero slope corresponds to a linear force–displacement relationship. The inset shows the ∕𝛿 ∼ 𝛿 curves with linearized foundation. (c)  ∼ 1 − 𝛿 curves 
for 𝜂 = 10−4 and 𝜂 = 10−6 when 𝛿 > 0.8. The dashed lines represent the scaling relation in Eq. (3.32). Here the force–displacement curves for different pre-tensions lie on top of 
each other.
and hence the corresponding dimensionless depth 𝛿𝑐 ∼ 𝜏−1∕2. There-
fore, due to the geometrical nonlinearity in the elastic sheet, the 
premise for the linearized theory to hold is 𝛿 ≪ 𝛿𝑐 .

In Fig.  6a, we use a point indenter ( = 100) to show the indentation 
force–depth curve with a nonlinear vdW foundation. The linear regime 
is reflected in the flat portion of the ∕𝛿 − 𝛿 plot in Fig.  6b. To get 
rid of the nonlinearity due to the foundation, the inset in Fig.  6b 
provides the relationship between the apparent indentation stiffness 
∕𝛿 and indentation depth 𝛿 for a linearized vdW substrate under 
identical conditions, which validates the prediction of Eqs. (3.26) and 
(3.27). In addition, at large indentation depth, indentation on the linear 
7

foundation exhibits an  ∼ 𝛿2 relationship (which has also been 
discussed in Box et al. (2017)).

For the nonlinear vdW foundation, however, the singularity re-
quires extra considerations. As the dimensionless indentation depth 𝛿
approaches 1, the short-range repulsive force of the van der Waals 
substrate beneath the indenter gradually becomes (1 − 𝛿)−9 singular. 
As a result, even though the scale of the bending boundary layer is 
small, the high intensity of the distributed force can still exert a non-
negligible influence on the indentation force. We denote the horizontal 
scale of the bending boundary layer as 𝓁𝑠, which cannot be simply 
estimated using the three characteristic lengths from Section 3.3.1 due 



International Journal of Solids and Structures 315 (2025) 113346E. Chen and Z. Dai
Fig. 7. Schematic illustration of the spherical indentation model, where a spherical 
indenter of radius 𝑟𝑠 makes contact with the thin film, forming a contact area of 
unknown radius 𝑎. At small indentation depths, the shape of the spherical indenter 
can be approximated as a paraboloid according to Derjaguin et al. (1975).

to strong nonlinearity. Meanwhile, the vertical scale 𝛿𝑠 of the boundary 
layer, which is crucial for estimating the bending energy, also need to 
be determined. This is because the simple self-similar approximation 
(Eq. (3.14)) no longer holds when the vdW singularity has a significant 
effect only within the boundary layer.

To determine the horizontal scale 𝓁𝑠 and vertical scale 𝛿𝑠 of the 
boundary layer, two relationships are required. The first relationship 
is derived from an energy perspective: The dimensionless bending 
energy within the boundary layer and the energy stored in the substrate 
beneath are given by: 

bend ∼ 𝓁2
𝑠

(

𝛿𝑠
𝓁2
𝑠

)2

∼
𝛿2𝑠
𝓁2
𝑠

and sub ∼ 𝓁2
𝑠 (1 − 𝛿)−8 , (3.28)

respectively. Minimizing the sum of these two dominant energy con-
tributions yields 𝛿𝑠 ∼ 𝓁2

𝑠 (1 − 𝛿)−4. It is worth noting that the choice 
of characteristic area does not affect the energy minimization result; 
therefore, the relative size of the indenter radius and 𝓁𝑠 does not need 
to be considered. The second relationship is derived from a geometric 
perspective. Considering the bending term and the substrate repulsive 
force term in Eq. (3.4) (since these two are the most critical for 
boundary layer), we have: 
𝛿𝑠
𝓁4
𝑠
∼ 1

(1 − 𝛿)9
. (3.29)

Solving Eqs. (3.28) and (3.29), we have 
𝛿𝑠 ∼ 1 − 𝛿 and 𝓁𝑠 ∼ (1 − 𝛿)5∕2 . (3.30)

Following a similar discussion on characteristic areas as in Section 3.3, 
we obtain the singular substrate energy in the two limiting cases of 
different indenter radii: 

𝑡𝑜𝑡𝑎𝑙 ∼

{

𝓁2
𝑠 (1 − 𝛿)−8 ∼ (1 − 𝛿)−3 , for 𝜂 ≪ (1 − 𝛿)5∕2 ≪ 1

𝜂2 (1 − 𝛿)−8 ∼ (1 − 𝛿)−8 , for (1 − 𝛿)5∕2 ≪ 𝜂 ≪ 1,

(3.31)

which yield the indentation force: 

 ∼

{

(1 − 𝛿)−4 , for 𝜂 ≪ (1 − 𝛿)5∕2 ≪ 1
(1 − 𝛿)−9 , for (1 − 𝛿)5∕2 ≪ 𝜂 ≪ 1.

(3.32)

This means that in the limit of an extremely small indenter, even when 
the indentation depth is close to 1, the presence of bending stiffness 
prevents the (1 − 𝛿)−9 singularity predicted by the vdW interaction. 
This is because the transverse scale of the singular region also depends 
on the indentation depth 𝛿. In Fig.  6c, we show this scaling relation 
together with numerics obtained under two different indenter radii. 

4. Spherical indentation with linear foundations

In the previous section, we have revealed a linear punch indentation 
response for thin sheets on vdW foundations when the indentation 
depth is small and the vdW foundation can hence be linearized. In 
8

this section, we apply the same vdW foundation to a spherical in-
denter, which may better reflect the conditions of actual indentation 
experiments performed on cells and 2D materials (Mandriota et al., 
2019; Cellini et al., 2018). As shown in Fig.  7, we consider a spherical 
indenter with radius 𝑟𝑠, which forms a contact area with radius 𝑎 when 
the indentation depth, defined as the downward distance between the 
bottom of the sphere and the equilibrium position of the film, is 𝑑. The 
key difference between a spherical indenter and a cylindrical indenter 
is that as the indentation depth increases, the contact area between 
the indenter and the thin film also increases, leading to a movable 
boundary. Accordingly, we give the dimensionless contact radius and 
sphere radius as 
𝜂 = 𝑎

𝓁vdW
and 𝑅𝑠 =

𝑟𝑠
𝑟𝑐
, (4.1)

respectively, where 𝑟𝑐 = 𝓁2
vdW∕2𝜎 is a typical radius. The definitions of 

𝓁vdW and 𝜎 can be found in Eq. (3.3).

4.1. Boundary conditions

We use the same Eqs. (3.4) and (2.8), but new indenter geometry 
requires redefining the boundary conditions at the contact line (𝑅 = 𝜂) 
as follows:

𝑊 (𝜂) = −𝛿 +
𝜂2

𝑅𝑠
, 𝑊 ′ (𝜂) =

2𝜂
𝑅𝑠

, 𝑊 ′′ (𝜂) = 2
𝑅𝑠

,

𝛷′′ (𝜂) −
𝛷′ (𝜂)
𝜂

= − 𝜂2

𝑅𝑠
2
, 𝛷 (𝜂) = 0.

(4.2)

Here, we have assumed that the sheet fully conforms to the indenter 
inside the contact region and the indenter shape is approximated 
by a paraboloid. Therefore, the first equation in (4.2) represents the 
indentation depth condition. We consider nonvanishing bending stiff-
ness and assume no adhesion between the indenter and the sheet 
so the slope and curvature continuity conditions at the contact line 
are ensured by the second and third equations. Substituting the first 
equation of (4.2) into the compatibility Eq. (2.8) and eliminating the 
undetermined parameters yields the fourth boundary condition for the 
Airy stress function 𝛷. An additional boundary condition, compared to 
a punch indentation, is required to determine the contact radius 𝜂 as a 
function of indentation depth. To facilitate numerical computation, we 
initially relax the curvature continuity condition and use the remaining 
four boundary conditions to obtain the solution for a given contact 
radius and indentation depth. The indentation depth is then iteratively 
adjusted using the Newton–Raphson method to satisfy the curvature 
continuity condition. The numerical solutions are presented as solid 
curves in Fig.  8.

4.2. Analytical results

We then seek analytical solutions to the spherical indentation prob-
lem by linearizing Eq. (3.4) to be Eq. (2.13). Solving Eq. (2.13) sub-
jected to boundary conditions (4.2) yields the film deflection curve in 
the form of Eq.  (3.6) with the following values for 𝐶1 and 𝐶2:

𝐶1 =
−2𝐾0−𝜂 −𝐾1−𝜆1∕2− 𝜂2 + 𝛿𝐾1−𝜆1∕2− 𝑅𝑠

𝑅𝑠

(

𝐾0−𝐾1+𝜆
1∕2
+ −𝐾0+𝐾1−𝜆

1∕2
−

) and

𝐶2 =
2𝐾0+𝜂 +𝐾1+𝜆

1∕2
+ 𝜂2 − 𝛿𝐾1+𝜆

1∕2
+ 𝑅𝑠

𝑅𝑠

(

𝐾0−𝐾1+𝜆
1∕2
+ −𝐾0+𝐾1−𝜆

1∕2
−

)

(4.3)

with 𝜂 implicitly given by 
𝐶1𝜆+

(

𝐾0+ +𝐾2+
)

+ 𝐶2𝜆−
(

𝐾0− +𝐾2−
)

= 4∕𝑅𝑠, (4.4)

where the definition of 𝐾𝑛± is the same as in Section 3.2. Again, the 
indentation force can be obtained by combining the repulsive force 
inside and outside the contact line, say  = in + out , where 

𝐹in = −2𝜋
𝜂 1

[

1 − 1
]

𝑅 d𝑅 (4.5)
∫0 6 (𝑊 (𝑅) + 1)3 (𝑊 (𝑅) + 1)9
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Fig. 8. (a) Normalized deflection calculated numerically with 𝜂 = 2.5 (top panel) and the evolution of the contact radius as a function of indentation depth (bottom panel) for 
different pre-tensions. (b) Indentation force–depth curves under different pre-tensions. The solid curves represent numerical solutions; The black dashed curves correspond to the 
expression combining Eqs. (4.5) and (4.6), while the red dashed curves only show the contribution by the region outside the contact area, i.e., Eq. (4.6). Here 𝑅𝑠 = 50.
here 𝑊 (𝑅) = −𝛿 + 𝑅2∕𝑅𝑠 due to indenter geometry and 
𝐹out = −2𝜋𝜂

(

𝐶1𝜆+
−1∕2𝐾1+ + 𝐶2𝜆−

−1∕2𝐾1−
)

. (4.6)

Fig.  8a shows the normalized deflection (top panel) and the evo-
lution of the contact radius as a function of the indentation depth 
(bottom panel), both show good agreement between the analytical 
solution (denoted by dashed curves) and numerical solutions (denoted 
by solid curves). As expected, the growth rate of the contact radius 
decreases with the increase of the pre-tension. This leads to the fact that 
when the dimensionless indentation depth 𝛿 ≲ 0.02, a larger pretension 
corresponds to a larger contact radius, while the opposite is true when 
𝛿 ≳ 0.02.

Although Eq. (4.4) is highly non-linear, in the limit of small pre-
tensions (𝜏 ≪ 1) we can still make some analytical progress. In 
particular, when 𝛿𝑅𝑠 ≫ 𝐶∗ (𝐶∗ will be discussed shortly), Eq. (4.4) 
is simplified to 𝜂2 + 2

√

2𝜂 − 𝛿𝑅𝑠 + 2 = 0, so the contact radius is solved 
as 
𝜂 =

√

𝛿𝑅𝑠 −
√

2. (4.7)

Alternatively, when 𝛿𝑅𝑠 ≪ 𝐶∗, the contact radius turns to be 
𝜂 = 𝑒−𝜋∕(𝛿𝑅𝑠). (4.8)

Here, the transition point 𝐶∗ corresponds to the value of 𝛿𝑅𝑠 when the 
contact radii calculated using Eqs. (4.7) and (4.8) are equal. Solving 
this transcendental equation numerically yields 𝐶∗ ≈ 3.2.

Fig.  8b shows a comparison between analytically calculated inden-
tation force–depth curves and the numerical solutions to the nonlinear 
problem. In this case, the curve is intrinsically nonlinear due to the 
varying contact radius. The good agreement when 𝛿 ≲ 0.1 demonstrates 
that the linearized theory might be used to interpret the spherical 
indentation experiment on cell membranes and 2D materials (Cellini 
et al., 2018; Mandriota et al., 2019). Additionally, Fig.  8b reveals a 
trend similar to that in Fig.  3b: as pre-tension increases, the region 
outside the contact area becomes increasingly significant (as suggested 
by the overlap of the red dashed and black dashed curves), allowing us 
to disregard the repulsive force stored in the contact region when the 
pretension is sufficiently large.

5. Multilayer structures

Motivated by angstrom indentation on few-layer 2D materials in
Gao et al. (2015, 2018), we replicate and stack the previously discussed 
elastic sheet-vdW foundation system in the vertical direction. A multi-
layer structure is thus formed (as shown in Fig.  9a), where each layer 
has the same bending stiffness 𝐵, pre-tension 𝛾, and is connected to the 
layer below through linearized vdW interactions of stiffness 𝐾 . Such 
9

vdW
structures, aka. vdW materials, have attracted great interest in recent 
years, as the stacking of 2D materials provides a novel platform for 
advanced electronic devices (Dai et al., 2019, 2020). In this section, we 
propose to describe the punch indentation response of such a multilayer 
structure.

5.1. Numerical approach

For multilayer structures, we still use Föppl–von Kármán Eqs. (2.7) 
and (2.8) to describe the response of each layer (note that it makes no 
significant difference by using nonlinear foundation such as Eq. (3.4) 
when dealing with indentation stiffness). However, additional chal-
lenges arise in handling the boundary conditions: except for the top 
layer, the first displacement boundary condition in Eq. (3.5) is un-
known. This missing boundary condition prevents us from solving the 
thin sheet deflection in one step, so we adopt the method of Newton–
Raphson iteration instead. Specifically, the deflection at the center of 
the 𝑛th layer (counting from top to bottom) is denoted as 𝛿𝑛, with 
the total forces from the upper and lower interactions as 𝐹+

𝑛  and 𝐹−
𝑛 . 

clearly, 𝐹−
𝑛 = 𝐹+

𝑛+1, and in the final equilibrium state, we expect 𝛥𝐹𝑛 =
𝐹+
𝑛 − 𝐹−

𝑛 = 0.
To avoid matching the boundary conditions near the indenter edge 

and simplify our numerical calculations, a spring with known stiffness 
is introduced between the cylindrical indenter and the uppermost sheet. 
When this spring is sufficiently stiff (at least 𝐾spring = 104 in the code), 
it effectively becomes a Dirichlet boundary condition, corresponding to 
the prescribed indentation depth, but also make 𝛿1 unknown. We start 
with an initial estimation of 𝛿(0)𝑛  and then calculate the correction vector 
according to the following equation: 
⎛

⎜

⎜

⎜

⎜

⎝

𝛥𝛿1
𝛥𝛿2
⋮
𝛥𝛿𝑛

⎞

⎟

⎟

⎟

⎟

⎠

= −𝐽−1

⎛

⎜

⎜

⎜

⎜

⎝

𝛥𝐹1
𝛥𝐹2
⋮

𝛥𝐹𝑛

⎞

⎟

⎟

⎟

⎟

⎠

(5.1)

where Jacobian 𝐽 is an 𝑛×𝑛 matrix whose elements are defined as 𝐽𝑖𝑗 =
𝜕𝛥𝐹𝑖
𝜕𝛿𝑗

 (here the partial derivatives are calculated by finite difference). 
Eq. (5.1) allows us to update the initial estimation: 𝛿(𝑖+1)𝑛 = 𝛿(𝑖)𝑛 + 𝛥𝛿𝑛, 
and the iteration procedure repeats until final convergence is achieved 
(𝛥𝐹𝑛 ≤ 1∕1000𝐹1). We provide the matlab code for the calculation of 
multilayer indentation in GitHub.

5.2. Approximate methods

For an 𝑛-layered sheet-foundation system, the coupling of the de-
formation between layers makes it difficult to derive an completed 

https://github.com/Chen-ET-0224/2025IJSS
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Fig. 9. (a) Schematic illustration of punch indentation on a multilayer structure. The white spring between the indenter and the sheet is fictitious for the convenience of numerical 
calculation. (b) The indentation stiffness as a function of pre-tension under point load. The black dashed curves represent the theoretical predictions given by ‘‘point model’’ 
discussed in the main text, whose error with numerical results (solid curves) is shown in Fig.  10. The star-shaped markers represent the numerical indentation stiffness 𝐾n with 
low pre-tension, the fitting results of (𝐾n∕𝐾1

)2 yields the selection of correction parameter 𝛼𝑛 shown in Eq. (5.4), clearly 𝐾1 = 8 according to Eq. (3.20).
analytical solution for indentation stiffness. However, given the thor-
ough understanding of the single-layer sheet system in Section 3, we 
try to approximate the multilayer indentation problem as a single-
layer case. In other words, the hope is to effectively reduce a 𝑛-layer 
indentation problem with interlayer spring stiffness 𝐾vdW into a single-
layer case with an effective vdW stiffness 𝐾eff (𝑛), which relates to 𝐾vdW
via 
𝐾eff (𝑛) = 𝛼𝑛𝐾vdW, (5.2)

where 𝛼𝑛 is a correction parameter to be determined. To remain con-
sistent with the dimensionless form shown in Eq.  (2.6), we also need to 
apply the following equivalent adjustments to the indenter radius and 
pre-tension using 𝛼𝑛: 

𝜂eff = 𝛼1∕4𝑛 𝜂 and 𝜏eff = 𝛼−1∕2𝑛 𝜏 (5.3)

To clarify again, 𝜂, 𝜏 is nondimensionalized by 𝐾vdW, and 𝜂eff , 𝜏eff
is nondimensionalized by 𝐾eff (𝑛). With this approach, as long as 𝛼𝑛 is 
chosen appropriately, by substituting all variables with their equivalent 
counterparts according to Eqs. (5.2) and (5.3), results for single-layer 
indentation from Section 3 can be applied to analyze the indentation 
stiffness and its asymptotic behavior of multilayer structures. Next, we 
discuss how 𝛼𝑛 is selected.

The idea is to ensure that this equivalent approach with 𝛼𝑛 captures 
the correct asymptotic behavior of the system under both small and 
large indenter sizes. In the case of small indenter radii where the 
indentation stiffness is controlled by 𝐾out , equation  (3.18) for the 
single-layer system has suggested the indentation stiffness ∝ 𝐾1∕2

vdW at 
the limit of 𝜏 → 0. Therefore, we determine 𝛼𝑛 by the square of the ratio 
of the numerically calculated indentation stiffness of 𝑛-layer system to 
that of the single-layer case (extra explanations can be found in Fig.  9):
𝛼𝑛 ≈ (5.8063 𝑛−0.6223 + 2.1985)2∕64. (5.4)

As such, the effective model can capture the asymptotic behavior of 
indentation stiffness in the limit of 𝜏 → 0, as shown in Fig.  9b. We refer 
to this model as the ‘‘point model’’ in the following text. Interestingly, 
this point model also works well in the regime of 𝜏 ≫ 1. The reason 
is that as the pre-tension increases, the indentation stiffness would be 
instead controlled by 𝜏, making 𝐾eff (𝑛) and hence 𝛼𝑛 not important. 
Therefore, as suggested by Fig.  9b where the numerical solutions 
(solid curves) closely match the predictions of the point model (dashed 
curves), the point model simplifies the analysis without significantly 
sacrificing accuracy.

For large indenter radii, the region inside the indenter becomes 
more significant (the same trend as shown in Fig.  3b). In this region, all 
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layers are compressed ‘‘equally’’, allowing the problem to be directly 
simplified as a series of springs (referred to as ‘‘spring model’’ in the 
following text), i.e.,
𝛼𝑛 = 1∕𝑛,

which leads to 𝜏eff = 𝑛1∕2𝜏 and 𝜂eff = 𝑛−1∕4𝜂.
It is foreseeable that this approximation will eventually become 

inaccurate when the pre-tension becomes exceedingly large; however, 
this typically falls beyond the range of pre-tension that we are con-
cerned with. Fig.  10a shows the indentation stiffness as a function of 
pre-tension for 𝜂 = 100, where we observe good agreement between the 
numerical solution (solid curves) and the theoretical prediction from 
spring model(dashed curves) when 𝜏 ≤ 100.

To further explore the applicability of the two models for intermedi-
ate indenter radii, Fig.  10b presents the maximum error of indentation 
stiffness between the theoretical and numerical solutions at different 
indenter radii. The error is calculated within the range of 𝜏 = 0.001
to 𝜏 = 100. Hence, by applying the point model when 𝜂 ≪ 1 and 
the spring model when 𝜂 ≫ 1, the maximum error in predicting 
indentation stiffness across five orders of magnitude of pre-tension 
remains below 10%. This confirms the validity of this simplified the-
oretical framework. In addition, we observe a ‘‘jump’’ in the slope 
of the curves in Fig.  10b, which is not due to numerical errors, as 
we have verified the independencies on computational grids and the 
stiffness of the fictitious spring. Instead, it arises because our study 
on multilayer indentation adopts an equivalent approach designed 
for different asymptotic regimes, without accounting for the complex 
deformation of the underlying films. Therefore, in regions where each 
model is not applicable, the error inevitably increases rapidly. Also, the 
position where the jump appears for the two models differs slightly 
(with the dashed line’s jump at a later point). This may be due to 
differences in the mechanisms and locations of maximum error for the 
two models. The error of the point model is well-controlled under both 
small and large pre-tensions as discussed, while the maximum error 
of the spring model consistently occurs at maximum pre-tension. As 
shown in Fig.  A.11b in the appendix, the two models exhibit similar 
positions in transition points for average errors.

6. Concluding remarks

6.1. Apparent stiffness

This paper has systematically analyzed the indentation force–depth 
relationship for a single-layer sheet on an elastic foundation. In par-
ticular, a set of analytical solutions have been derived for both punch 
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Fig. 10. (a) Comparison between the numerical indentation stiffness (solid curves) and predictions from the ‘‘spring model’’ for an indenter radius of 𝜂 = 100. (b) Maximum error 
(calculated within the range of 𝜏 = 0.001 to 𝜏 = 100) between the numerical solution and the indentation stiffness predicted by the two models for different indenter radii. The 
mean error (which is smaller) is shown in Fig.  A.11(b).
and spherical indenters, when the foundation could be linearized under 
small deflections. For a punch indenter, a linear force–displacement 
relationship is consistently observed when the indentation depth 𝛿 ≪
𝛿𝑐 , where 𝛿𝑐 , due to the geometrical nonlinearity in the thin sheet, 
depends on the pre-tension 𝜏 and the dimensionless parameter : 

𝛿𝑐 =

{

−1∕2 for 𝜏 ≪ 1,
𝜏−1∕2 for 𝜏 ≫ 1,

(6.1)

The asymptotic behavior of the corresponding indentation stiffness 
depends on the relative magnitude of the dimensionless indenter radius 
𝜂 and pre-tension 𝜏, and is summarized as follows: 

When 𝜏 ≪ 1, 𝐾out ∼

{

8 for 𝜂 ≪ 1,
2
√

2𝜋𝜂 for 𝜂 ≫ 1,
(6.2)

whilst 

when 𝜏 ≫ 1, 𝐾out ∼

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2𝜋 𝜏
ln 𝜏 for 𝜂 ≪ 𝜏−1∕2,

2𝜋 𝜏
ln
(

√

𝜏∕𝜂
) for 𝜏−1∕2 ≪ 𝜂 ≪ 𝜏1∕2,

2𝜋𝜂
[

1
√

𝜏
+
√

𝜏
]

for 𝜂 ≫ 𝜏1∕2.

(6.3)

As the dimensionless indentation depth 𝛿 → 1, the short-range repul-
sive force of the van der Waals substrate causes a singularity in the 
force–displacement relationship of the following form: 

 ∼

{

(1 − 𝛿)−4 , for 𝜂 ≪ (1 − 𝛿)5∕2 ≪ 1
(1 − 𝛿)−9 , for (1 − 𝛿)5∕2 ≪ 𝜂 ≪ 1.

(6.4)

For a spherical indenter, the movable contact boundary introduces 
additional nonlinearity, suggesting a nonlinear force–depth relationship 
even when 𝛿 ≪ 𝛿𝑐 . However, when the pre-tension 𝜏 ≪ 1, the contact 
radius, implicitly determined by Eq. (4.4), can be largely simplified 
with 𝛿𝑅𝑠 serving as the key parameter: 

𝜂 ∼

{

√

𝛿𝑅𝑠 −
√

2 for 𝛿𝑅𝑠 ≫ 3.2,
𝑒−𝜋∕𝛿𝑅𝑠 for 𝛿𝑅𝑠 ≪ 3.2.

(6.5)

For the multilayer indentation problem, we reduce a 𝑛-layer inden-
tation problem with interlayer spring stiffness 𝐾vdW into a single-layer 
case with an effective vdW stiffness 𝐾eff (𝑛) = 𝛼𝑛𝐾vdW, Where 𝛼𝑛 is 
a correction parameter obtained through fitting, and is related to the 
number of layers via the following expression: 

𝛼𝑛 =

{

(

5.8063 𝑛−0.6223 + 2.1985
)2 ∕64 for 𝜂 ≪ 1,

(6.6)
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1∕𝑛 for 𝜂 ≫ 1.
by utilizing the equivalent pre-tension and indenter radius: 𝜏eff =
𝛼−1∕2𝑛 𝜏 and 𝜂eff = 𝛼1∕4𝑛 𝜂, we can analyze multilayer indentation based 
on the analytical results from single-layer indentation.

6.2. Conclusion

This paper has developed a theoretical model for the indentation of 
elastic sheets on mattress foundations. Starting from the linearized von 
Kármán equations and foundations, we systematically discussed the ex-
istence and analytical expression of indentation stiffness for punch and 
spherical indenters, showing excellent agreement with numerical re-
sults. Additionally, we presented asymptotic results for the indentation 
stiffness of punch indentation under different regimes of pre-tensions 
and indenter radii. These behaviors arose from the different dominance 
of three characteristic lengths 𝓁𝛾 ,𝓁𝐵 , and 𝓁𝐵𝛾 in different regions of 
the sheet. Based on these results, we determined when pre-tension 
and indenter radius could be safely neglected at different scales: in 
the dimensionless framework used in this paper, pre-tension could be 
ignored when 𝜏 ≪ 1, and the indenter radius could be ignored when 
𝜂 ≪ min

{

𝜏−1∕2, 1
}

, implying that the impact of indenter radius must 
be treated carefully at large pre-tensions. For multilayer systems, we 
introduced an equivalent foundation stiffness to extend the single-layer 
analysis approach, which proved surprisingly effective. In conclusion, 
this study provided a quantitative understanding of how pre-tension 
and indenter radius affect indentation stiffness, offering valuable in-
sights for interpreting indentation experiments on small-scale materials 
and structures.
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Fig. A.11. (a) Comparison between the numerical solution for indentation stiffness (solid curves) and 𝐾in = 𝜋𝜂2eff (dashed curves) with the spring model for an indenter radius of 
𝜂 = 100. (b) Mean error (calculated within the range of 𝜏 = 0.001 to 𝜏 = 100) between the numerical solution and the indentation stiffness predicted by the two models for different 
indenter radii.
Appendix. Demonstration of the necessity of the multi-layer in-
dentation model

In Section 5.2, we proposed that when the indenter radius is large, 
the influence of 𝐾in is more significant, so 𝐾𝑛

vdW = 𝐾vdW∕𝑛 is used as 
the equivalent foundation stiffness. This idea makes us raise a question: 
Is 𝐾in itself sufficient to describe the indentation stiffness, and is it still 
meaningful to discuss the asymptotic behavior of 𝐾out? Fig.  A.11 shows 
the comparison between the numerical indentation stiffness curve and 
𝐾in = 𝜋𝜂2eff  curve when 𝜂 = 100. We note that even when 𝜏 ≪
1, using only 𝐾in to explain the indentation stiffness is not accurate 
enough, which further proves the necessity of our equivalent model that 
includes both 𝐾in and 𝐾out .

Data availability

Matlab code for indentation of multilayer structure is available in 
GitHub.
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