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Fracture Mechanics of 2D Crystal Blisters with Irregular
Geometry

Jiacong Cao, Zhaohe Dai,* Chuanli Yu, Wenxiang Wang, Xiaoding Wei,
and Yueguang Wei*

Attaching a thin elastic film onto a substrate often traps liquids or gases at the
film-substrate interface, resulting in blisters. While typically undesirable,
blisters that spontaneously form during the assembly of atomically thin 2D
crystals have demonstrated intriguing functionalities—such as high-pressure
chemistry and liquid-cell electron microscopy—that exploit the nanoscale
confinement of the blister. However, a quantitative understanding of this
confinement, including the confining pressure and membrane tension, has
been hindered by the irregular shapes of 2D crystal blisters, which occur
particularly often in single- or few-layer 2D crystal systems. Here, experiments
and theory are combined to reveal how the competition between elastic and
adhesive forces in 2D crystal blisters selects the blister shape. It is shown that
the geometry of the blister encodes a wealth of useful information, which can
be decoded using fracture mechanics concepts, including strain/stress fields,
pressure levels, and interface toughness between the 2D crystal and its
substrate. These findings have immediate implications for the fabrication and
design of 2D crystal-based devices and applications, where blister formation
can be either a hindrance or a beneficial feature.

1. Introduction

While two flexible solids with perfectly matching surface ge-
ometries can theoretically contact to form a seamless interface,
achieving this ideal is usually impractical.[1,2] For example, when
applying stickers or facial masks even to flat surfaces, annoying
wrinkles or blisters can readily develop,[3] particularly when com-
pressive stresses are inadvertently introduced during the con-
tact process (Figure 1A,B).[4–7] Although this issue might be a
minor inconvenience in applications such as the placement of
stickers,[6,8] it poses significant challenges in the fabrication of
electronics.[9] In particular, the device assembly relies heavily
on transfer printing of ultra-thin functional films,[10,11] where
the formed interfacial blisters can severely compromise device
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integrity and performance (Figure 1C).[12]

The problem is further exacerbated for de-
vices based on atomically thin 2D crys-
tals (Figure 1D),[9,11] as preventing the
spontaneous formation of blisters in such
systems has been extremely difficult.[13]

Recently, the particular ubiquity of blis-
ters in 2D crystal devices has spurred
significant advances not only in a num-
ber of nanoscale techniques for their
removal,[15–17] but also in a host of fas-
cinating physics and applications that ex-
ploit the unique blister confinement.[18–21]

For instance, the elastic strain in sponta-
neous graphene blisters has been found
to induce pseudo–magnetic fields greater
than 300 Tesla.[22,23] The pressure inside
2D crystal blisters can reach up to 7
GPa, enabling the propagation of solvent-
free organic reactions that typically do
not occur under standard conditions.[24,25]

More recently, the liquid confined within
2D crystal blisters has exhibited diffu-
sion dynamics slowed by a factor of 108,

enabling liquid-cell electron microscopy as a “slow-motion”
camera capable of revealing the conformational substates of
biomacromolecules such as DNA.[26–28] Yet, a fundamental ques-
tion that arises—whether one aims to exploit or eliminate these
blisters—is: How do blisters form, and what controls the con-
finement, such as pressure? This question is typically addressed
by focusing on circular 2D crystal blisters,[21,29–33] drawing an
analogy to the sessile droplet problem (Figure 1E,F).[34,35] How-
ever, unlike droplets with uniform surface tension, 2D crys-
tal blisters generally experience non-uniform elastic membrane
tension.[36,37] Consequently, as the crystal thickness decreases,
particularly in single-layer systems, the stress states become in-
creasingly complex, and non-circular or irregular blister shapes
become more prevalent (as shown in Figure 1D).[14,37,38] Such
irregularly shaped blisters have been widely observed but re-
main poorly understood, directly limiting their applications such
as strain engineering and liquid-cell electron microscopy that
rely on single-layer 2D crystals often taking irregular blister
geometries.[27,28] Here, we address this gap by presenting experi-
ments and a theoretical analysis of the mechanics of irregular 2D
crystal blisters. We show that the often observed irregular shape
results from a complex interplay of residual, elastic, and adhe-
sive forces. Furthermore, we show that a quantitative understand-
ing of this interplay can reveal a wealth of useful information
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Figure 1. Elastic blisters across multiple scales. A) Photo of a sticker “carelessly” placed on window glass. B) Photo of a thin polymeric sheet partially
conforming to a sphere with capillary adhesion. Reproduced with permission.[6] C) Optical image of interfacial blisters formed after the deposition of
a 60-nm-thick gold film on a thin PMMA layer. D) AFM amplitude images of blisters formed by transferring graphene sheets onto hBN substrates with
water molecules trapped at the interface. Reproduced with permission.[14] E) Schematic illustration of the classical droplet problem, featuring Young’s
contact angle. F) Schematic illustration of the elastic blister problem, where the liquid is covered by an elastic sheet of Young’s modulus E and thickness
t, resulting in an elastic version of contact angle.

encoded in the blister geometry, including not only strain, stress,
and pressure fields but also the affinity between the crystal and
its substrate.

2. Results

We fabricate spontaneously formed graphene blisters on hexag-
onal Boron Nitride (hBN) and graphite substrate using a wet-
ting transfer method, and characterize their geometry via atomic
force microscopy (AFM) (see details in Section S1 Support-
ing Information).[39] Locally, the blister shape can be described
by its principal curvatures, as illustrated in Figure 2A. Sim-
ilar to a typical fracture mechanics problem, understanding
blister formation requires solving the boundary value problem
for blisters of arbitrary curvature under boundary conditions
that are not immediately clear, while also clarifying the ap-
propriate energetic balances in the system. We address these
challenges sequentially.

2.1. The Compatibility Equation

In typical few-layer 2D crystal blisters, the deflection is
moderate,[30,36] allowing the use of Föppl–von Kármán (FvK)
plate theory to describe the deformation of the 2D crystal.[40–42]

Since the out-of-plane deformation of the 2D crystal can be di-
rectly measured, we focus on the compatibility equation in FvK
theory:

1
Et

∇2∇2𝜒(x, y) + K(x, y) = 0 (1)

where∇2 = ∂2/∂x2 + ∂2/∂y2, E and t denote Young’s modulus and
the thickness of the 2D crystal, respectively, 𝜒 is the Airy stress
function to be determined, and K is the local Gaussian curvature
of the blister, defined by

K = 𝜕2w
𝜕x2

𝜕2w
𝜕y2

−
(

𝜕2w
𝜕x𝜕y

)2

(2)

with w(x, y) representing the measured out-of-plane deformation
of the 2D crystal (Figure 2A).
We will solve this problem numerically using a spectral

method due to its computational efficiency.[43] We follow the
approach reported by Darlington et al.,[44] while carefully con-
sidering the effect of far-field residual stress T (see Figure 2A).
The method transforms the biharmonic equation with a source
function Equation (1) into two coupled Poisson equations:∇2𝜒 =
Φ(x, y) and ∇2Φ = −EtK(x, y). In this context, the boundary con-
ditions arising from the residual stress T are approximated by Φ
= Txx + Tyy and 𝜒 = 1

2
Txxy

2 + 1
2
Tyyx

2 − Txyxy (see Section S2B,
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Figure 2. Strain fields in irregular 2D crystal blisters. A) Schematic of a blister subject to a far-field stress field T. Its shape is directly measured using
AFM, and the local geometry is characterized by the principal curvatures 𝜅1 and 𝜅2 (Gaussian curvature K = 𝜅1𝜅2). B, C) AFM height image of a bubble-
like and tent-like multilayer graphene blister. D, E) The radial (left) and hoop (right) strain fields for a circular bubble-like blister (D) and tent-like blister
(E) of height h and radius a, subjected to different levels of residual stress. Markers represent numerical calculations (calculated based on h/a = 0.1),
while solid curves are analytical predictions (given in Section S2.5, Supporting Information).

Supporting Information). We employ a Chebyshev spec-
tral method,[43] which reduces the coupled partial differ-
ential equations to two algebraic equations that can be
readily solved under the imposed boundary conditions. De-
tails of the numerical scheme are provided in Section S2C
(Supporting Information). The stress distribution within
the blister is then determined by the calculated Airy stress
function 𝜒 :

Nxx =
𝜕2𝜒

𝜕y2
, Nyy =

𝜕2𝜒

𝜕x2
, and Nxy = −

𝜕2𝜒

𝜕x𝜕y
(3)

which further yields the strain distribution via Hooke’s law and
the pressure distribution via FvK equations (Section S2.4, Sup-
porting Information).
Before discussing irregular blisters, we validate our numer-

ical method by calculating the strain distribution for simple,
circular blisters—specifically, bubble-like and tent-like blisters
commonly observed in experiments, as shown in Figure 2B,C,
respectively.[45] For simplicity, we assume that the shape of a sin-
gle blister is given by

w(r) = h
[
1 −

(|r|
a

)𝛼]
(a − |r|) (4)

where h and a denote the blister height and radius, respectively,
r = (x, y) is the polor coordinate,  is the Heaviside step func-
tion. We set 𝛼 = 1 for tent-like blisters and 𝛼 = 2 for bubble-
like blisters. Under an equibiaxial residual stress T at infin-
ity, the problem becomes axisymmetric and can be solved an-
alytically (see Section S2.5, Supporting Information). Our nu-
merical calculations are performed using Equation (4) within a
square domain of side length 4a. In Figure 2D,E, we compare
the numerically calculated radial and hoop strain distributions

(markers) with the analytical solutions (solid curves) under var-
ious levels of residual stress. Excellent agreement is observed
even near the tent center, where the strain diverges logarithmi-
cally. We then proceed to analyze irregular blisters subjected to
anisotropic residual stresses, which are typically not well defined
a priori.

2.2. Residual Stresses

Direct measurement of residual stresses in thin films has long
been challenging.[46] For atomically thin 2D crystals, even ad-
vanced techniques such as Raman spectroscopy can yield data
that is affected by substrate doping effects.[47] Consequently, pre-
vious studies on circular 2D crystal blisters have assumed zero
residual stress, which is not well justified.[30,36,37] We will demon-
strate that this simplification can lead to an underestimation of
both the stress field and the adhesive forces required for equilib-
rium.
Fortunately, the geometry of irregular blisters itself offers a

solution. These blisters (such as the commonly observed trian-
gular blisters) typically exhibit buckled channels at their vertices
(Figure 3A), which are clear signatures of compressive residual
stresses [38,48]. Moreover, the formation of buckles can substan-
tially relieve the compression in ultrathin films, making the as-
sumption of zero residual stress more appropriate.[1,37,48] How-
ever, to achieve greater accuracy, we estimate the residual com-
pressive stress,−T∞, acting perpendicular to the buckled channel
based on its geometry. Locally, this reduces to a 1D buckle delami-
nation problem (see Figure 3B), for which the Föppl–vonKármán
theory simplifies to B d4w

dx4
+ T∞

d2w
dx2

= 0, where B is the bending

stiffness of the crystal.[49] The solution to the buckling profile is
w=A(1+ cos 2𝜋x/𝜆), whereA and 𝜆 represent the amplitude and
wavelength (Figure 3B).[50] As such, the residual stress is given
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Figure 3. The mechanics of irregular 2D crystal blisters. A) AFM ampli-
tude images of a single triangular blister formed by transferring a mono-
layer graphene sheet onto a boron nitride substrate, featuring three small
buckles at the vertices. B) Schematic cross-section of the buckle, charac-
terized by its amplitude A and wavelength 𝜆. C) The moiré pattern formed
between the graphene sheet and the boron nitride substrate in the blister-
free region, indicating that the interface is atomically smooth and clean.
D) Schematic illustration of the delamination at the blister edge. At the
scale of the blister radius, an apparent contact angle is observed, whereas
at the scale of ℓ* ∼ (B/N)1/2, the film makes contact with the substrate
smoothly.

by the critical Euler buckling force,[46,50,51] which relates to the
buckle geometry via

T∞(𝛽) = 𝜋2B∕𝜆21∕2 (5)

where 𝛽 is the in-plane orientation angle of the buckle and 𝜆1/2
is the half-peak width of the buckle cross profile, as illustrated
in Figure 3B. We adopt 𝜆1/2 because it is more readily assessable
than the full wavelength in experiments.
We can then apply this approach to all three buckles that form

a “rosette strain gauge”, allowing for the estimation of the three
residual stress components. We find that T∞/Et ≲ 10−5 ≪ 1 in
the triangular few-layer graphene blisters observed in our exper-
iments. As a consequence, the numerical results suggest that it
is fairly legitimate to assume zero residual stress when calculat-
ing the strain and stress fields in buckled irregular blisters (note
that this would not be the case for round blisters that may ex-
perience some unknown, non-negligible residual tension). No-
tably, the simple form of Equation (5) benefits from the lubricated
interface between the 2D crystal and its hBN substrate, thereby
avoiding complex mode-mixity.[52,53] This lubrication essentially
arises from the incommensurate contact at the interface, as evi-
denced by the formation of moiré patterns in regions outside the
graphene-on-hBN blister (Figure 3C).[54–56]

2.3. The Energy Release Rate

Having completed the boundary value problem, we now turn to
the elastoadhesive interaction in irregular blisters. Since blister
formation is a spontaneous process, we expect a local force bal-
ance at the blister edge, i.e.,

 = Γ (6)

where  is the energy release rate that drives the peeling of the
2D crystal from its substrate, and Γ is the interface toughness
or adhesion energy that resists delamination or promotes inter-
face closure.[46] This balance implies that our method measures
the apparent adhesion energy. Note that there are possible elec-
trostatic interactions due to the charge doping effects in these
vdW heterostructures, though typically negligible compared to
the dominant elastoadhesive forces.[57]

Thanks to the relatively straight blister edges observed in irreg-
ular blisters (Figure 3A), we can invoke the 1D thin film delam-
ination problem,[46,52] for which the energy release rate is given
by

 = M2

2B
+ ΔN2

2E′t
(7)

whereM denotes the torque exerted by the film at the crack front,
E′ is the plane-strain Young’s modulus of the crystal, and ΔN
represents the difference in membrane tension across the crack
front, as illustrated in Figure 3D. A boundary layer analysis pre-
sented in Section S3.1 (Supporting Information) indicates that
evaluating Equation (7) requires sophisticated measurements of
the blister curvature within a region of size 𝓁∗ =

√
B∕N near the

crack front, whereN is membrane tension at the blister edge (see
Figure 3D). For typical few-layer 2D crystal blisters, where B ≲

100 nN · nm andN ∼ E′t/100, we estimate that ℓ* ≲ 4 nm, which
greatly limits the direct application of Equation (7).
By contrast, when observing at the scale of the blister radius

(Figure 3D),[58] we can utilize a well-defined contact angle 𝜃 and
a numerically calculable membrane stress state near the blister
edge. Inspired by Kendall’s peeling theory,[59] the energy release
rate is given by

 = N(1 − cos 𝜃) (8)

As such, the equilibrium condition G = 𝛾 implies an elastic ana-
log of Young’s contact angle at the blister edge (see the compari-
son between Figure 1E,F). It can be shown that the two methods
for evaluating the energy release rate are, in fact, identical (Sec-
tion 3, Supporting Information), as long as the contact angle is
consistently revealed by cutting the blister at a height 𝛿cut ≫ ℓ*𝜃,
i.e.,

𝛿cut ≫ 𝜃
√
B∕N and N > 0 (9)

which can be readily achieved in practice. We note that the cut-
off height cannot be arbitrarily large as the observed contact angle
decreases with increasing 𝛿cut. To avoid significant deviations, we
set 𝛿cut to be one-tenth of themaximum blister height while satis-
fying Equation (9) and 𝛿cut < 𝜃2P/(30N), where P is themaximum
pressure of the blister (based on a scaling analysis in Section 3.2,
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Figure 4. Revealing the elastoadhesive interaction in irregular 2D crystal
blisters. AFM height image of monolayer graphene on a graphite substrate
containing many blisters (A) and an intercepted single blister (B). C) Pres-
sure distribution calculated from the height profile of the blister in (B).
D,F) Computed strain distributions based on (C). G, H) The normal mem-
brane tension and contact angle along the edge of the blister, defined by
the cut-off height 𝛿cut. I) Adhesion energy calculated via Equation (8), sat-
isfying the criterion in Equation (9). Note that the scale bar in (C-I) is iden-
tical to that in (B).

Supporting Information). By considering perfectly circular blis-
ters of shape given by Equation (4) (for which  can be provided
analytically), we test the energy release rate obtained this way,
producing relative errors within 10% (see Figures S4, Support-
ing Information).

3. Discussion

Finally, we apply the fracture mechanics framework outlined in
the preceding section to gain a quantitative understanding of the
elastoadhesive interactions in irregular 2D crystal blisters that
have been frequently observed in many single-layer 2D crystal-
based applications.[19,27,28,30,36]

3.1. Strain, Tension, and Adhesion

Figure 4A shows a typical AFM height image of a monolayer
graphene sheet transferred onto a graphite substrate via wet-
ting transfer. Numerous triangular and polygonal blisters with
relatively straight edges are observed. To demonstrate the anal-
ysis process, we select a triangular blister (highlighted by the

white box in Figure 4A) and reproduce it in Figure 4B. We ap-
ply Gaussian smoothing to eliminate noise from the experimen-
tal data. The resulting blister height profile is then used to com-
pute the Gaussian curvature function, which is substituted into
Equation (1) to formulate the problem. The boundary residual
stresses are estimated from the morphology of the three buckles
at the blister vertices, according to Equation (5) and the associated
stress transformation. We then employ the numerical scheme
discussed in the preceding section to solve for the Airy stress
function. Finally, the pressure and strain fields are obtained using
Equation (3) andHooke’s law (see the results for the selected blis-
ter in Figures 4C–F). In Figure S2 (Supporting Information), we
also show similar results for monolayer and four-layer graphene
blisters on hBN substrates.
Figure 4D indicates that the strain within the blister is predom-

inantly tensile, with a magnitude of approximately 1%. This ob-
servation is consistent with a rough estimation based on the blis-
ter geometry, in which the strain is expected to scale as h2/a2—
here, h ≈ 10 nm represents the typical blister height and a
≈ 100 nm the typical blister size (see Figure 4B). In contrast,
the buckled regions exhibit compressive strains; however, these
quantitative valuesmay be less reliable due to the insufficient res-
olution of the height data for the small buckles. Moreover, the
pressure within the blister-confined region is relatively uniform,
with a value on the order of 10 MPa (Figure 4C). This is consis-
tent with a rough estimation of Eth3/a4 derived from the analysis
of circular blisters.[60] Intriguingly, a negative pressure region ap-
pears near the blister edge in Figure 4C. This phenomenon can
be attributed to the strong short-range attractive forces, such as
van der Waals interactions between the 2D crystal and the sub-
strate.
In Figure 4G–H, we make a horizontal cut through the blister

to expose its edge along with the normal membrane tension act-
ing perpendicular to it, the local contact angle, and—by applying
the equilibrium condition Equation (6) and the energy release
rate Equation (8)—the corresponding interface toughness. On
the straight blister edges, the membrane tension is mostly posi-
tive, effectively playing a role analogous to a peeling force with a
peeling angle 𝜃. Moreover, the blister rotation is relatively mod-
est (with 𝜃2 ≲ 0.07), which justifies the use of Föppl–von Kármán
theory. We can then calculate the interface toughness (i.e., the ad-
hesion between the graphene sheet and the graphite substrate)
based on Equation (8), which lies between 80 and 120 mJ m−2

in this sample, in good agreement with previously reported in-
direct measurements (86–221 mJ m−2)[36,61] (A comparison with
the literature is provided in Table S1, Supporting Information).

3.2. Apparent Interface Toughness

We then apply our framework to triangular blisters observed
across three material systems: monolayer graphene on graphite,
monolayer graphene on hBN, and four-layer graphene on hBN.
The membrane tension and contact angle measured at the blis-
ter edges (which satisfy the scaling requirement given in Equa-
tion (9)) are summarized in Figure 5A, with approximately
100 data points plotted for each straight blister edge (involv-
ing around 10–20 edges for each group). The local N∝𝜃−2 rela-
tion in Figure 5A agrees with the condition for the balance of
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Figure 5. The elastoadhesive interaction at the blister edge. A) Relation-
ship between the membrane tension and local contact angles measured
from three different pairs of materials: monolayer graphene on graphite
substrate, monolayer graphene on hBN substrate, and four-layer graphene
on hBN substrate. The solid lines are based on Equations (6) and (8) with
different adhesion energies. B) The extracted adhesion energy for the three
pairs of interface.

elastic and adhesive forces in Equation (8). The resulting appar-
ent adhesion is then calculated. We find that the distribution of
adhesion values calculated from the same blister is relatively con-
centrated, whereas calculations from different blisters tend to
be dispersed. We attribute the dispersion to mixed mode frac-
ture at the blister edge.[52] While the mechanics at the actual in-
terfaces are complicated by coupled normal (adhesion) and tan-
gential (friction/shear) interactions,[53] our model focuses on the
mode I fracture. This simplification likely accounts for the ob-
served variation in adhesion energy across different blisters on
the same substrate. Despite this dispersion, the overall values are
stable, as presented in Figure 5B for three interfaces: monolayer
graphene on graphite (0.06–0.23 J m−2), monolayer graphene on
hBN (0.26–0.5 J m−2), and four-layer graphene on hBN (0.11–
0.32 J m−2). Notably, the results indicate that the graphene–hBN
affinity is systematically stronger than the graphene–graphite
affinity, which aligns with practical experiments demonstrating
that hBN is an effective stamp for picking up graphene sheets
from various substrates, including graphite.[9,11,62] In addition,
the apparent adhesion is found to decrease with the thickness of
the graphene sheets, likely due to the reduced conformal contact
for relatively thick crystals, which agrees with previous experi-
ments and simulations.[53,63,64]

The framework discussed can, of course, be applied to rel-
atively round blisters. However, as mentioned before, it is un-
clear what the residual stress is in this case. A natural option
is to assume vanishing far-field stress, as in previous analytical
models.[30,32,36,45,65] With this assumption, we use our framework
to calculate the apparent adhesion based on circular blisters in
Figure S5 (Supporting Information), which agrees well with pre-

dictions from analytical models,[30,32,36,45,65] even though circular
blisters could undergo complex wrinkling patterns near the con-
tact line.[37,60] Nonetheless, the adhesion energy estimated from
circular blisters is found to be significantly lower than that from
triangular blisters (Figure S5, Supporting Information). This dis-
crepancy might be attributed to non-trivial far-field stresses in
circular blisters that we have had to neglect. Therefore, caution is
needed when using round blisters for adhesion estimation due
to the unclear far-field stress state, highlighting the need for fur-
ther investigation. By contrast, the residual stresses are largely
released in triangular blisters through edge buckles, providing
a better platform for characterizing the strain fields and energy
release rate. This may explain why the adhesion energies esti-
mated via circular spontaneous 2D crystals have been systemati-
cally lower than those measured via other methods, such as the
double cantilever beam test.[53]

4. Conclusion

In conclusion, we have developed a fracture mechanics frame-
work to quantitatively understand the interplay of adhesive and
elastic forces in irregular, spontaneously formed 2D crystal blis-
ters. Our approach enables a more accurate measurement of the
blister strain distribution by using strain gauges to estimate the
far-field stress state. Looking forward, our method can be inte-
grated with data-driven techniques like machine learning to en-
able rapid strain sensing in the nanoscale. We have shown that
a quantitative understanding of such elastoadhesive interactions
can reveal a number of useful information, including the strain
and stress fields and internal pressure in blisters, which have
been elusive previously. Interestingly, though exhibiting diverse
shapes, blisters show local membrane tensions that are approxi-
mately inversely proportional to the square of the local contact
angle due to the elastoadhesive interactions. Although we use
water-filled blisters here, our theoretical framework is based on
continuum mechanics (FvK plate theory and fracture mechan-
ics) and does not make any assumptions about the substance
trapped inside the blister, other than that it exerts a pressure
on the film. Therefore, the model is, in principle, applicable to
gas-filled blisters. Moreover, the fracture mechanics framework
presented here is not limited to graphene and can be general-
ized to other 2Dmaterials and flexible thin films, achieving high-
throughput adhesion energy analysis in the future. Overall, our
results have direct applications in strain engineering, adhesion
mechanics, high-pressure chemistry, and liquid-cell electron mi-
croscopy, where few-layer 2D crystals often take irregular blister
shapes and understanding the mechanics of nanoscale confine-
ment is crucial.

5. Experimental Section
Spontaneous water blisters were prepared by employing a water-assisted
wetting transfer method to deposit 2D crystals onto an hBN substrate in
ambient air.[39] AFM phase and height images were acquired using an Asy-
lum Research Cypher.[17] The inhomogeneous biharmonic equation was
solved via a Chebyshev spectral method.[43] In this approach, the objec-
tive function was first expanded in finite-order Chebyshev polynomials of
the first kind, which were interpolated at Gauss-Chebyshev-Lobatto points
(xj = cos j𝜋/N, ∼j = 0, 1, …, N). The interpolating polynomials were then

Adv. Funct. Mater. 2025, e09438 © 2025 Wiley-VCH GmbHe09438 (6 of 8)
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differentiated at these Chebyshev points to approximate the derivatives of
the objective function. This linear procedure converted the differentiation
operation into a matrix operation, yielding the so-called Chebyshev spec-
tral differentiation matrix. Finally, the partial differential equations were
transformed into algebraic equations by applying this derivation matrix to-
gether with the far-field stress boundary conditions. Extended experimen-
tal results and additional details on the theoretical models and numerical
scheme could be found in the Supporting Information.
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Supporting Information is available from the Wiley Online Library or from
the author.
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