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A Real-Time Imaging Sensing System to Visualize Elastomer
Surface Profile Evolution for Dynamic Tactile Recognition

Zhibin Zou, Zilan Li, Yuanzhi Zhou, Guoyuan Zhou, Weiliang Xu, Muxing Huang,
Wenfeng Wu, Huiming Zhang, Zhaohe Dai, and Xinming Li*

Elastomer-based interfaces provide rich functionalities for tactile sensing,
particularly in making tiny differences in contact dynamics potentially
detectable. However, the minimal motion-induced changes in the elastomer’s
surface and their disappearance during time-lapse limit the state recognition
within the current scheme of motion recognition. In this work, a new scheme
of real-time motion mode recognition for subtle deformations is proposed,
which uses an optical tactile sensing system to visualize and distinguish tiny
variations in surface profile evolution encoded as images. Illustrating with a
sphere, sliding-induced asymmetric elastomer surface deformation is
visualized as a “drag” in optical images. The convolutional neural network
(CNN) algorithm is used to analyze the evolution of surface contour features
during the interaction between the sphere and the elastic medium. Motion
state recognition is achieved with 80% accuracy when a displacement of only
8.3% of the sphere diameter is produced. In addition, the system also offers
the potential to analyze dynamic motion information through a single image,
with an accuracy of 82.7% for velocity recognition. This dynamic real-time
recognition framework for soft media deformation paves the way for novel
motion-based input commands for tactile sensing and human-computer
interaction applications.

1. Introduction

The contact perception of the human-computer interface is cru-
cial for the recognition of interactive instructions.[1–5] During the
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touch process, opportunities for obtain-
ing multi-model contact information arise
through the design of interface elastomers,
electronic skin, or humanoid dexterous
hands.[6–11] Adopting a soft contact interface
enables the acquisition of response position
and deformation behavior in the contact to
enable data richness.[6,12–16] However, exist-
ing characterizations of the contact behav-
ior focus on the deformation position and
area of the soft interface,[17–19] which are far
from sufficient to resolve complex and es-
pecially dynamic motion behaviors.[20] For
example, the rolling and sliding of the con-
tact on the interface is difficult to recog-
nize. The key reason is that the deformation
of elastomers caused by movement behav-
ior is concealment at the microscopic scale,
and will fade out with time.[20,21] The loss of
such undercover deformation features dis-
ables the distinction between slightly differ-
ent motion behaviors. Therefore, accurately
identifying contact behavior requires ob-
taining micro-deformation of the elastomer
surface.[22–28] How to dynamically identify

the difference of micro-deformations under different motion be-
haviors is therefore of great significance and challenges.[29,30]

The detection of elastomer deformations can be realized by
the contact model algorithm. The contact behavior of the object
causes the elastomer surface to deform, which in turn causes
the signal change of the deformation area detection system.[31,32]

With the help of the algorithm model, the deformation of the
elastomer surface can be reconstructed accurately with high res-
olution. However, in the deformations analysis method domi-
nated by an algorithm model, the requirement of a tailored con-
tact model for elastomers with varying parameters lacks versa-
tility. Another strategy for detecting deformations is based on
optical methods, which allow to recording of contact informa-
tion as images.[33] For example, binocular vision schemes can
be used to characterize and visualize the dynamic 3D distribu-
tion of traction stress at a micro-nano scale.[34] Computer vision-
based optical strain (CVOS) technology can achieve low hystere-
sis detection of the tensile behavior of the elastomer surface.[35]

In addition, combining the marker array with the finite element
analysis method is an effective way to achieve real-time detection
of deformations.[36–39] However, the large amount of redundant
information in visual imaging systems and the limited density
of marker array systems make it not always effective to extract
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information about micro-deformations. This makes it difficult to
dynamically record and digitize such differences in deformation
profiles, hindering the analysis of the object’s dynamic contact
state.[40]

To address the demand and challenge of dynamic real-time
detection of elastomer micro-deformation, this work explores a
scheme of real-time deformation recognition using an optical tac-
tile sensing system to visualize and digitize the evolution of the
elastomer surface profile during time-lapse, which enables the
identification of motion behavior. Taking the analysis of the mo-
tion behavior of a sphere as an example, the optical system is
used to perform real-time dynamic identification of the tiny de-
formation of the elastomer caused by the motion of the sphere.
The system encodes the tiny deformations of the elastomer sur-
face utilizing optical signals and tiny units of Complementary
Metal Oxide Semiconductor (CMOS). The difference in the mo-
tion behavior of the sphere is manifested as the different evolu-
tion forms of the surface contour of the elastic medium over time
and transmitted by a combination of intensity variations in con-
tinuous light signals. We used a high-resolution optical percep-
tion method to record the surface contour of the elastic medium
in the form of an image. Thanks to the advantages of the con-
volutional neural network algorithm in image feature process-
ing, the motion behavior recognition based on the analysis of the
surface contour features of the tiny elastic medium was success-
fully realized. Taking the motion behavior of the 6 mm diam-
eter sphere as an example, motion state recognition with 80%
accuracy is achieved when a displacement of only 8.3% of the
sphere diameter is produced. In addition, we have also achieved
dynamic motion information analysis through a single image,
and the accuracy of motion speed recognition has reached 82.7%.
This method has great application potential in tactile sensing that
requires real-time dynamic detection and subtle evolution in the
surface morphology of the elastomer. A “behavior prediction” sce-
nario is set to demonstrate the system’s advantages in detecting
the dynamic evolution of subtle motion features. The result helps
to understand the dynamic motion occurring on elastomers and
hence plays an important role in human-computer interaction
platforms.

2. Results and Discussion

2.1. Dynamic Deformation Recognition Scheme Based on
Optical Image Representation

Contact of a rigid object with an elastomer will result in deforma-
tion of the elastomer related to both the contact behavior and the
shape of the object. Therefore, by identifying and resolving the
deformation, it is feasible to evaluate the contact behavior. Here,
we use a steel sphere as a model object. During the horizontal
sliding of the sphere, the increase of the lateral contact region
will raise the shear forces, which is like the ploughing effect in
metallic friction.[22,40,41] This directly changes the distribution of
the horizontal contact stresses px1 and px2 on both sides and the
vertical contact stress pz. As a consequence, asymmetric deforma-
tion of the elastomer is eventually developed under the action of
contact stress. In contrast, this phenomenon is not obvious in the
rolling process, thus providing an opportunity to detect subtle de-

formation caused by object motion modes by analyzing detailed
elastomer deformation (Figure 1a).

The recognition of detailed and subtle deformation requires
the system to have the characteristics of large information con-
tent and high resolution. The optical image perception-based
method can meet this demand.[42] Our previous research has con-
structed an optical system that can effectively visualize and dig-
itize the surface morphology of elastomers (Figure S1, Support-
ing Information).[43] Within the field of view, the morphology of
the elastomer surface and the small variations in time are con-
tinuously encoded and transmitted by the optical signals. The
CMOS in the system is to record elastomer deformation infor-
mation encoded using optical signals that are directly related to
the kinematic patterns of the objects that are interacting with the
contact. As a form of storing motion patterns, the distribution
of pixels on an image contains key features for resolving mo-
tion patterns. Parallel light incidence and reflection in the de-
formation region allow the optical image to faithfully record the
state of deformation produced on the elastomer, thus allowing
the sphere’s behavior to be determined by the different deforma-
tions caused by various motions (Figure 1b). For example, when
a sphere slides on the PDMS, the elastomer deforms to a greater
degree in the front side of the motion direction. Under the in-
teraction of contact stress, the curvature of the elastomer surface
profile on the rear side of the movement direction tends to be flat,
which is manifested as a smaller surface deformation angle and
a larger deformation area. It results in asymmetric deformation
of the elastomer.[38–40] This asymmetric deformation will result
in dynamically changing optical image features. The evolution
characteristics of the elastic medium surface profile are tiny in
the image. Thanks to the local feature extraction capability and
positional non-specificity of convolutional neural networks, the
characterization of optical images can accurately and dynamically
identify individual positional features recorded on optical images
and analyze the movement pattern of the sphere in real-time.
(Figure 1c).[44–47]

Since the contact behavior is recorded by optical images, it is
necessary to discuss the relationship between the contact state
and the image pixel distribution to accurately identify the spher-
ical motion. Figure 2a,b shows that the elastomer will occur two
different deformations during the sphere rolling and sliding. The
sphere is pressed with a vertical load to ensure its contact with
Polydimethylsiloxane (PDMS). A horizontal force is applied on
the sphere in a contact state to produce uniform velocity. This
process is discussed through direct experimental observations
that are presented in Figure S2 (Supporting Information). When
the elastomer is pressed by a sphere vertically, it deforms and
conforms to the shape of the sphere, which enables its close
contact with the sphere. As a horizontal force is applied to the
sphere in contact, the sphere moves horizontally on the elas-
tomer, causing further deformation of the elastomer and par-
tial loss in conformability. This dynamic process directly affects
the evolution of the surface profile of the elastomer over time
(Figure 2c). Such movement changes during this contact can be
fully presented and recorded in the optical system. Since both
the elastomer deformation and the light transmission are con-
tinuous, the resolution of the variation produced in tiny areas
depends on the spacing of the receiving units where the sam-
pling is performed. The large number of dense pixels on CMOS
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Figure 1. Optical detection method for dynamic subtle deformation of elastomer surface. a) Symmetric and asymmetric deformation of elastomer when
the sphere moves. Pz: Vertical contact stress Px1, Px2: Horizontal contact stress. b) The scheme of recognition system of sphere motion modes. c) The
motion modes recognition with CNN in real-time.

enables the dynamic visualization and digitization of the elas-
tomer surface profile change process in real-time (The experi-
mental procedure refers to “slide and roll tests” of Methods). Fur-
ther, the minute changes in elastomer deformation presented by
the pixels enable the reflection of minute responses that are suf-
ficiently fine.

As shown in Figure 2d, the PDMS generates symmetric defor-
mation around the contact region in the rolling process (Video
S1, Supporting Information). As shown in the top view, the
symmetrical deformation lies right below the sphere and can-
not be observed directly. The optical image appears as a cir-
cular light spot. With a sliding sphere, the elastomer surface
has additional deformation on the rear side of the sphere’s mo-
tion direction in the top view (Video S2, Supporting Informa-
tion). The asymmetric deformation of the elastomer surface en-
ables the increase of the light reflection area and results in
more CMOS pixel units to respond to the reflected light sig-
nal. In optical images, this dynamic process is recorded as
a crescent “drag” shape area gradually increasing from noth-
ing (Figure 2d). In addition to the sphere’s motion along the
x-axis of the image field of view, this phenomenon could be
observed in other motion directions (Figure S3, Supporting
Information).

2.2. Analysis of Image Features of Deformation During Sphere
Movement

To further understand the dynamic motion characteristics of the
sphere through soft interface deformation, it is necessary to dig-
itally analyze the evolution process of the surface profile. We ex-
tract the spot area from the images and the variation of the spot
area S/S0 during the motion, where S0 represents the spot area
when the object is static and S represents the spot area at any
time during the motion. In addition, to gain a sensible insight
into the impact of sphere sliding on image features, a new fea-
ture parameter L is introduced to represent the length of the elas-
tomer surface deformation in the direction of motion, expressed
in pixels. The optical system records the dynamic surface pro-
file evolution process caused by sphere sliding and rolling at a
speed of 0.5 mm s−1 in Figure 3a (i, ii). The influence of the differ-
ent motion behaviors of the sphere on the surface profile of the
elastomer could be characterized by the variation in the size of
the image feature area. The result of this dynamic change could
be evaluated by image features and channel value distribution
(Figure 3a (i, ii)). We further discuss the relationship between
the movement speed of the sphere and the variation of image
features (displacement distance is 1.5 mm, refer to Figure 3b).
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Figure 2. Optical image features of subtle deformation caused by the dynamic motion of the sphere. a) The sphere rolls on the surface of the elastomer,
resulting in a symmetric deformation of the elastomer. Scale bar, 2 mm. b) The sphere slides on the surface of the elastomer, resulting in an asymmetric
deformation of the elastomer surface. c) Evolution of elastomer surface profile during sphere moving. d) Interface deformation and optical images under
different motion behaviors. Scale Bar, 1 mm. The side view and top view are schematic diagrams of the sphere moving on the elastomer.

The results show that the area does not vary significantly at dif-
ferent speeds when the sphere rolls. Compared with the rolling
behavior, the sliding speed of the sphere affects the rate of change
of the image area, which is manifested as a positive correlation
between the rate of change of the elastomer surface deformation
area and the sliding speed.

Notably, the growth rate of the “drag” area can be correlated
with the movement velocity of the sphere. Figure 3c shows the
evolution process of this image feature in the form of a schematic
diagram. For the sphere sliding over the elastomer, after the
sphere reaches a certain displacement, the size of the “drag” area
is correlated with the motion velocity (Figure 3d; Figure S4, Sup-
porting Information). This is probably related to the hysteresis of
elastomer deformation. The dynamic changes of the optical im-
age features are similar to the deformation trend of the elastomer
caused by the sphere movement, showing that the optical system
we proposed can realize real-time recognition of sphere motion
speed on the deformation of elastic surface to a certain extent.

To further discuss the system’s ability to identify the difference
of deformation in real-time, we analyze the variation of the image
features at each motion moment in an early moving phase (refer
to the dynamic acquisition of sphere motion images of experi-
mental procedures). As shown in Figure 3e, the image feature
length L (along the movement direction) begins and continues
to increase as the movement progresses after the sphere slips for
0.6 s (0.3 mm of displacement distance). For the rolling behavior
of the sphere, the image feature length L does not change signifi-

cantly. Figure 3f shows the distribution of channel value response
to the motion behaviors at the time of 2.4, 3.0, 3.6, 4.2, and 4.8 s
in the optical image. During the movement of the sphere with a
tiny displacement, the image channel value distribution records
the slight changes in the surface profile of the elastomer. The re-
sults show that at the beginning of the movement, the change
rate of the image feature length L is relatively slow at first (dis-
placement less than 0.3 mm), then gradually increases, and fi-
nally tends to be stable (displacement more than 0.6 mm and
refer to Figure 3g). This phenomenon may be related to the de-
formation characteristics of the elastomer itself. These observa-
tions suggest that in the early stages of the sphere’s motion, the
image features of its sliding behavior may be difficult to distin-
guish from the image features of its rolling behavior. The above
results show that the optical recognition method we proposed can
dynamically capture the elastomer surface profile caused by the
movement behavior in real-time.

The image characteristics of the subtle elastomer deforma-
tion caused by sphere sliding are represented by tiny features
contained in each pixel area. The convolutional neural network
(CNN) can effectually perceive and extract these global and lo-
cal features, and then for recognition and judgment (Figure 4a).
During the dynamic movement of the sphere, the elastomer sur-
face deformation recorded in real-time by CMOS is input into
CNNs for behavior classification (refer to the dynamic acquisi-
tion of sphere motion images of experimental procedures). The
result shows that the recognition rate of sliding motion modes
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Figure 3. The variation of area and sphere motion. Scale Bar, 1 mm. a) (i) Sphere moves on PDMS with 0.5 mm s−1 velocity, variation of “drag” width for
sphere rolling. (ii) Sphere moves on PDMS with 0.5 mm s−1 velocity, variation of “drag” width for sphere sliding. b) The relation between the variation of
the spot area and the velocity during rolling and sliding motions. c) Schematic diagram of the change of optical image characteristics at different sliding
speeds of the sphere. d) The effect of sliding velocity on variation of area. e) The change process of optical image feature under small displacement
distance. f) The distribution of image channel values corresponds to the two motion behaviors under small displacement. The data sampling is at t = 2.4,
3.0, 3.6, 4.2, and 4.8 s respectively) The change process of image feature length L under a small displacement distance. Where t1, t2, t3, t4, t5 represents
time equal to 2.4, 3.0, 3.6, 4.2, 4.8 s.
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Figure 4. Dynamic effects of motion behavior on algorithm recognition probability. Scar bar, 1 mm. a) The strategy of sphere motion modes recognition.
b) The variation of the area under different motion displacements and recognition accuracy were obtained by using CNN. c) variation of identification
accuracy during the sphere sliding process. d) Neural network heat map. Scale Bar, 1 mm. (i) Image and heat map of rolling motion. (ii). Image and
heat map of sliding motion. e) The optical images of a sphere moving at the same displacement at different velocities. f) The result of CNN’s probability
of recognizing sliding behaviors during sphere sliding with different velocities. g) The ability of CNN to distinguish spheres move at different velocities.
h) The framework for model robustness verification. i) The result of model robustness verification, the shore hardness of steel sphere, rubber sphere,
and silicone sphere are 90, 75, and 70 respectively.

shows a trend of increasing with the movement process, and fi-
nally stabilizes above 90%. It indicates that our proposed idea of
using deformation characteristics for motion recognition is fea-
sible (Figure 4b). Figure 4c shows the change in the accuracy
of CNN in classifying the motion modes of the sphere during
the early stages of spherical motion. The recognition probabil-
ity curve of sliding behavior shows that it rises rapidly as the
movement progresses and finally maintains a high level. When
the 6 mm diameter sphere moves only 8.3% of its diameter dis-
tance (0.5 mm), the CNN’s motion pattern recognition accuracy
reaches 80%. However, it is worth noting that in the early stage of
the sphere’s movement, the recognition probability of the move-

ment behavior has remained at a low level (less than 40% as
shown in Figure 4b). When the movement displacement reaches
a certain threshold (0.45 mm as shown in Figure 4b), the recog-
nition probability of the CNN for the movement behavior rises
sharply. This phenomenon may be consistent with the results
discussed in Figure 3g, that is, in the early stage of the sphere’s
movement, the image features of subtle elastomer deformation
caused by its rolling behavior are difficult to distinguish from the
image features of its sliding behavior, which affects the recogni-
tion probability output by the CNN.

The contribution of image features to motion recognition can
be explained by neural network heatmaps (Figure 4d). The heat
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map shows that the neural network mainly focuses on the over-
all pattern feature for the sphere rolling images (Figure 4d (i)).
Compared with the rolling moving image, the “drag” feature in
the sliding moving image shows higher attention, which indi-
cates that the image with the “drag” feature is easier to classify
as sliding motion (Figure 4d (ii)). This shows that the elastomer
deformation feature related to sphere motion behavior is the key
factor in realizing motion pattern recognition.

It is worth noting that the association between the sphere’s
speed and the “drag” feature affects the accuracy of the algorithm
in distinguishing movement patterns. Figure 4e shows an opti-
cal image of a sphere with a diameter of 6 mm moving 10 mm,
which contact with the surface of an elastomer at a constant pres-
sure. When the sphere moves in contact with the elastomer at a
constant normal pressure, the proportion of the “drag” feature in
the overall image features is inversely proportional to the velocity
of movement (Figure S4, Supporting Information). In addition,
Due to the limitation of CMOS performance, the excessively fast
movement speed causes blurred ghosting in the image (Figure
S5, Supporting Information), resulting in a rapid decrease in
the accuracy rate of CNN’s to distinguish rolling and sliding be-
haviors. This phenomenon affects the recognition of rolling and
sliding behaviors by the CNN algorithm. The faster the sphere
moves, the lower the probability of correctly identifying the slid-
ing behavior (Figure 4f). The reason for this phenomenon may
be related to the deformation characteristics of the elastomer and
the CMOS frame rate. When the speed of the sphere increases,
the creep characteristics of the elastomer cause the surface de-
formation behavior to lag behind the movement of the sphere.
This is manifested in that when moving the same distance, the
size of the “drag” feature is inversely proportional to the speed
of movement, which reduces the accuracy of CNN’s distinction
of motion behavior. When the speed of the sphere exceeds a cer-
tain threshold, due to the limitations of the CMOS frame rate and
exposure time, the moving image will appear ghosting and blur-
ring. This makes it impossible for CNN to accurately identify the
movement behavior. In particular, the optical system proposed in
this work has a detection limit of ≈5 mm s−1 for the speed of the
sphere. In addition, we also explored the system’s ability to iden-
tify the velocity of the sphere. Within the selected speed range,
the average accuracy of CNN classification for any frame optical
images reaches 82.7% (Figure 4g). This shows that it is possi-
ble to analyze dynamic motion information from static optical
images.

In addition to the speed of movement, some physical parame-
ters of the sphere during movement may affect the elastomer sur-
face’s subtle deformation, to change the image features, thereby
affecting the performance of the algorithm in identifying mo-
tion behavior. For example, load applied on the sphere, hardness
of the sphere, and other factors (Figures S6–S8, Supporting In-
formation). In particular, a sphere with too low hardness cannot
produce significant elastic deformation, which ultimately affects
the recognition of motion behavior. The size of the sphere affects
the minimum relative motion displacement distance required for
the system to accurately identify the motion pattern. Therefore, it
should take into full consideration the physical properties related
to objects when discussing the image features to motion modes
recognition ability. Since the size, material and other parameters
of the sphere will affect the recognition ability of the system, it is

necessary to explore the robustness of the method. First, a steel
sphere with a diameter of 6 mm is used to collect motion images
at a speed of 0.5mm s−1 to construct a data set. CNN will gener-
ate a motion recognition algorithm model through this data set.
Other data sets that have not been trained by CNN are sent to the
model for rolling and sliding recognition, and finally, an identifi-
cation result is output (Figure 4h). The result shows that the algo-
rithm has a high recognition probability for the motion behavior
of spheres of different materials and sizes, without retraining the
neural network for the sphere size and hardness parameters. The
reason is that the system’s ability to distinguish between move-
ment modes is conditional on the system’s ability to capture tiny
differences in elastomeric variables resulting from various move-
ment modes and to be able to effectively differentiate them in the
algorithm. Thus, our method can be used to directly discriminate
between spheres of different hardness and size interacting with
the elastomer whenever the state of motion causes the elastomer
to change concerning the motion pattern. For a neural network
that has learned pattern difference features for one type of sphere,
the feature differences induced by different hardnesses and sizes
of spheres are in the same feature framework, thus the condi-
tioning factors used for pattern recognition can be migrated to
different spheres (Figure 4i). Meanwhile, it is worth noting that
the applicability of the same neural network has a limited range,
considering the nature of the elastomer and the inconsistency in
the type of features produced by the motion patterns of differ-
ent objects. In the experiments, this difference in applicability is
reflected in the variation of prediction probabilities.

2.3. Dynamic Real-Time Recognition of Deformation Application
Scenarios

Interactions in physical space are often guided and driven by rel-
ative motion trends that exist before the motion occurs. Obtain-
ing this motion tendency before the actual motion begins can
help determine the state of an object and predict possible motion
events. Behavior-based motion data can be encoded by the system
into quantifiable tactile signals, which can be used as constraints
or judgment methods to participate in the construction of dig-
ital bionic physical models, providing support for digital twins
technology and tiny physical interactive behaviors For example,
if a person stands on the ground and wants to move, he needs to
apply force to the ground. At this time, there is an interaction rela-
tionship on the interactive interface that represents this motion
trend. Recording and identifying such movement trends facili-
tates the encoding and decoding of interaction instructions.

Here, we take “behavior prediction” as an example to demon-
strate this application prospect with a 3D-printed leg model
(Figure 5a). The initial contact contour between the “foot” and
the elastic interface is represented by the red trajectory. As the
horizontal driving force increases, the leg model goes through
three stages: “stand” to “try to move” to “moving”. In the “try to
move” stage, the leg model moves to the right with a tiny distance
and keeps relatively stationary with the elastomer surface in the
inertial reference frame. In this stage, it does not appear to move
visually. However, the appearance of the “drag” feature has been
captured in the optical image, indicating that the “leg” is driv-
ing the elastic surface to slide (Figure 5b; Video S3, Supporting
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Figure 5. Demonstration of “prediction of behavior”. Scale Bar, 0.5 mm. a) The schematic diagram of the prediction system for analysis of optical images.
b) The process behavior from approaching to moving “feet” with images. c) The system recognizes the relative movement of the “feet” before it is visually
detected. d) The CNN net calculates the image feature that contributes to motion behavior prediction. e) The process of “feet” from approaching to
move captured by the camera directly.

Information). In addition, as the driving force increases, the size
of the deformation feature is gradually bigger. The appearance of
the image feature occurs before the relative motion occurs, in-
dicating that the method based on the detection of subtle con-
tact interface deformation has a certain potential in behavior
prediction. The relationship between the probability of identify-
ing the “try to move” behavior and time also supports this con-
clusion (Figure 5c). In addition, the heat map of the convolu-
tional neural network shows that the “drag” feature of the heel
area in the optical image plays a major role in motion recogni-
tion (Figure 5d), indicating that the small deformation in con-
tact interface caused by the motion trend plays a key role in the
recognition of motion behavior. To intuitively illustrate the evo-
lution of the elastic interface in this process, Figure 5e shows
the contact process between the leg model and the PDMS inter-
face captured directly by CMOS. In addition, the system’s abil-

ity to dynamically image elastic deformation has the potential
to be applied to scenarios that are sensitive to motion behavior,
such as writing and erasing (Figure S9 and Video S4, Supporting
Information).

When faced with more complex interaction scenarios, the lim-
ited number of codes that accurately and effectively represent
each type of information may be limited. The behavior present
in each person’s movement patterns and gestures is a way of en-
coding information that depends on the individual. When we can
distinguish movement patterns and use the movement behavior
during the input process, rather than just the result of the input,
as the source of information, a richer source of available data can
be generated in a limited process. The addition of pattern recog-
nition can achieve differentiation by presenting the habits of dif-
ferent people, even if the interaction time and space are short.
This is difficult to achieve by only observing the results of the

Adv. Funct. Mater. 2025, 35, 2416731 © 2024 Wiley-VCH GmbH2416731 (8 of 11)
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Figure 6. Behavioral encryption in human-computer interaction system. Scale Bar, 1 mm. a) Different fonts for symbols. b) The writer’s identification
strategy based on the distribution of force, speed, and trajectory in writing habits. c) The results of CNN for identifying different writers. d) Unlocking
the system by moving the sphere. e) Schematic diagram of the system unlocking process. f) Motion recognition results of the unlocking process. g)
Demonstration of the unlock process.

interaction. We discuss this idea by distinguishing information
encryption with process differences. Using the ability to visualize
the evolution of interface subtle deformations during contact dy-
namics, we developed an ML framework that can distinguish the
identity of individual writers. Due to the different writing habits
of each person, the force, speed, and trajectory are different when
writing the same symbol or word (Figure 6a). The coherence of
these physical parameters will cause a unique evolution of inter-
face deformation features. Visualizing and digitizing this feature
can identify the writer (Figure 6b). The neural network can rec-

ognize the handwriting of different writers with an accuracy rate
of 77.9% (Figure 6c).

The fact that movement habits are encoded in the data traces
and can be recognized can be used for encryption and decryp-
tion of the information. Data input steps may be used to de-
crypt encrypted messages, but introducing different state modes
as additional variables in the motion process of the same path
can make the process less susceptible to decryption. This process
can be realized by introducing movement behavioral characteris-
tics into cryptographic systems to encryption, and decode it by

Adv. Funct. Mater. 2025, 35, 2416731 © 2024 Wiley-VCH GmbH2416731 (9 of 11)
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recognizing these dynamic motion features with slight differ-
ences. To demonstrate this concept, a sliding unlock scene is pro-
posed. When a system needs to be unlocked, it should first need
to control the “decoder”—the sphere to move (Figure 6d). During
the movement of the sphere, the movement behavior needs to be
changed and recorded in real-time. (The red and blue represent
the rolling and sliding of the sphere respectively. (Figure 6e)). The
moving images of the sphere are fed into a convolutional neu-
ral network for training and classification, then compared with
preset motion patterns, and finally the motion type of each im-
age is output. When the motion modes are consistent with the
preset results, the system is unlocked successfully (Figure 6f).
Figure 6g shows the recognition results of the correct permuta-
tion of motion modes and the incorrect permutation of motion
modes (Recognition probability rate refer to Figures S10 and S11,
Supporting Information). The external view and camera view of
the decoding process are shown in Figure 6g. The recognition
rate of the neural network for the motion modes is 77.7% when
the sphere is switching motion behavior. The recognition rate of
the neural network for the motion modes is 98% when the sphere
is stably rolling or sliding. We demonstrated this process in the
Graphical User Interface (GUI) unlock scene (Figure 6g; Video
S5, Supporting Information).

3. Conclusion

To recognize the motion-induced micro-deformation on the elas-
tomer’s surface and their disappearance during time-lapse, this
work presents a new scheme of real-time motion mode recog-
nition using an optical tactile sensing system to visualize and
distinguish tiny variations in surface profile evolution encoded
as images. The deformation features of the elastomer caused by
the movement of the sphere are recorded by the imaging system
and represented as the geometry of pixels in the optical image.
The difference in elastomer deformation between the sliding and
rolling behavior of the sphere is rendered by the crescent-shaped
“drag” characteristic of dynamic sliding and is shown to be fea-
sible for prediction in conjunction with neural networks. Using
high-resolution coding results and feature variations in the op-
tical image reflecting the motion behavior, to achieve the mo-
tion state recognition with 80% accuracy when a displacement
of only 8.3% of the sphere diameter distance is produced. Its
advantage in real-time dynamic visualization and digitization of
the deformation evolution of the elastomer surface profile helps
to understand the motion behavior of objects through soft inter-
face deformation. In addition, we demonstrated its application
in real-time dynamic recognition of sports behavior by building
two interactive scenarios: “prediction of motion behaviors” and
“behavior encryption.” This dynamic micro-deformation recog-
nition framework based on image recognition provides the value
of input command recognition based on motion behavior design
in human-computer interaction. This system is expected to be ap-
plied to digital twin technology and to guide the construction of
real physical interaction patterns in simulation. By encoding be-
havioral operations in the real physical world, objects in the vir-
tual digital world can be operated. It has development prospects
in the fields of human-computer interaction and augmented re-
ality (AR)/ virtual reality (VR).

4. Experimental Section
System Design: The incident light irradiance was 70.27 lx. The spatial

line width was 1.5 mm, and the distance from the sample was 100 mm.
The CMOS module was a Logitech G270 camera with a resolution of
1280 × 720 and a video frame rate of 16 Hz. The sensor structure refers
to Figure S12 (Supporting Information).

Slide and Roll Tests: The elastomer used in the experiment was A
PDMS with a cross-linking ratio of 10:1. A steel sphere with Shore hard-
ness A of 90 HA and a diameter of 6 mm was selected for the sample.
The sphere was fixed on the dynamometer adapter, and the sliding mo-
tion was driven by the cylindrical rotor of the dynamometer. The rolling
motion was driven by the disc-type adapter, and there was no fixed treat-
ment between the sphere and the adapter. The driving mode of the sphere
and the deformation of the elastomer surface caused by sphere movement
refer to Figure S13 (Supporting Information). A 7 N load was first applied
to a steel sphere with a diameter of 6 mm. Then the sphere was given dif-
ferent velocities to make it move horizontally. After a normal load of 7 N
was applied, the steel ball was driven by a horizontal displacement table
to slide and roll at a speed of 0.1, 0.5, 1.0, 1.5, 2.0 mm s−1 (in the sliding
test, The displacement distance of the center of the sphere was equal to
the horizontal displacement of the displacement table. In the rolling test,
the displacement distance of the sphere center was equal to half of the
horizontal displacement of the displacement table).

Spot Area Calculation: Spot area was calculated by cumulative method
to calculate the number of pixels in any frame image whose G channel
value was greater than 5 (due to hardware problems, a single pixel in the
image will produce 0–3 channel value fluctuations), and the sum of all
pixels in an image that meets this condition was the area of the spot in the
image.

CNN Configuration in the Experiment: Before neural network training,
data enhancement operations were first performed on the images. The
pattern was translated and rotated randomly, and the noise was added
randomly. The ResNet50 network was used to calculate the result. The
official pre-model was loaded. The data set was divided into training set,
verification set, and 0.6:0.2:0.2 test set. Each experimental group trained
80 epochs with a learning rate of 0.01. The lowest weight setting loss value
was verified during the experimental selection training.

Dynamic Acquisition of Spherical Motion Images: A sphere with a diam-
eter of 6 mm was subjected to a normal load of 7 N. Driven by the adapter,
the sphere moved at a constant speed of 0.5 mm s−1. The moment when
the CMOS starts to collect images was taken as time zero moment. The
sphere started to move at t = 2.4 s. The CMOS records 16 fps per second.

Recognition of “Write” and “Erase”: The convolutional neural network
classifies a circle pattern as a “rolling behavior.” Then the system recog-
nizes this instruction as “writing” and will read the spot position of the
current frame number image. Due to the translation invariant nature of
the neural network, the position of the pattern in the image does not affect
the judgment of the type of motion. When images with consecutive frames
were recognized as rolling, the system will record the position of the spot
in the continuous frame image as a continuous writing track. When the
slip terminal of the pen moves, the “drag” begins to appear on the rear
side of the circle pattern. The “drag” will become more pronounced as
the increase of the distance pen moves. The convolutional neural network
classifies it as “sliding behavior”. Then the system recognized the instruc-
tion as “erase” and records the spot position of the current frame number
image.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.

Acknowledgements
Z.B.Z. and Z.L.L. contributed equally to this work. X.M.L. acknowledges the
financial support from the Guangdong Basic and Applied Basic Research

Adv. Funct. Mater. 2025, 35, 2416731 © 2024 Wiley-VCH GmbH2416731 (10 of 11)

 16163028, 2025, 10, D
ow

nloaded from
 https://advanced.onlinelibrary.w

iley.com
/doi/10.1002/adfm

.202416731 by Peking U
niversity H

ealth, W
iley O

nline L
ibrary on [10/03/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.afm-journal.de


www.advancedsciencenews.com www.afm-journal.de

Foundation (No. 2022A1515010136), the Guangdong Provincial Key Lab-
oratory of Nanophotonic Functional Materials and Devices, and the South
China Normal University start-up fund. The authors thank Erteng Chen
from Peking University, Zefeng Chen from South China Normal Univer-
sity, Ming Zhou from Guangxi University of Science and Technology, and
Tingting Yang from Southwest Jiaotong University for the discussions.

Conflict of Interest
The authors declare no conflict of interest.

Data Availability Statement
The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Keywords
dynamic recognition, microscale deformations, optical imaging, visualiz-
ing surface profiles

Received: September 8, 2024
Revised: November 21, 2024

Published online: December 6, 2024

[1] X. Xiao, J. Wang, P. Feng, A. Gong, X. Zhang, J. Zhang, Nat. Commun.
2024, 15, 2423.

[2] J. Zhang, Z. Jin, G. Chen, J. Chen, Microsyst. Nanoeng. 2024, 10, 109.
[3] R. Han, Y. Liu, Y. Mo, H. Xu, Z. Yang, R. Bao, C. Pan, Adv. Funct. Mater.

2023, 33, 2305531.
[4] Y. Wang, J. Liang, J. Yu, Y. Shan, X. Huang, W. Lin, Q. Pian, T. Zhang,

Z. Zhang, Y. Gao, X. Yu, L. Wei, Z. Yang, Device 2024, 2, 100326.
[5] X. Wu, X. Luo, Z. Song, Y. Bai, B. Zhang, G. Zhang, Adv. Funct. Mater.

2023, 33, 2303504.
[6] J. Ge, X. Wang, M. Drack, O. Volkov, M. Liang, G. S. C. Bermúdez,

R. Illing, C. Wang, S. Zhou, J. Fassbender, M. Kaltenbrunner, D.
Makarov, Nat. Commun. 2019, 10, 4405.

[7] X. Xu, K. Scott, J. Chen, Device 2024, 2, 100462.
[8] J. Zhang, X. Hou, S. Qian, J. Huo, M. Yuan, Z. Duan, X. Song, H. Wu,

S. Shi, W. Geng, J. Mu, J. He, X. Chou, Microsyst. Nanoeng. 2024, 10,
64.

[9] J. Kang, J. Yoon, B. Lee, H. Jung, J. Kim, W. Nam, K. Jeong, J. Choi, D.
Son, S. G. Im, Device 2024, 2, 100426.

[10] D. B. Kim, J. Han, S. M. Sung, M. S. Kim, B. K. Choi, S. J. Park, H. R.
Hong, H. J. Choi, B. K. Kim, C. H. Park, J. H. Paik, J.-S. Lee, Y. S. Cho,
npj Flexible Electron. 2022, 6, 69.

[11] J. Qu, G. Cui, Z. Li, S. Fang, X. Zhang, A. Liu, M. Han, H. Liu, X. Wang,
X. Wang, Adv. Funct. Mater. 2024, 34, 2401311.

[12] D. Zhao, Y. Zhu, W. Cheng, G. Xu, Q. Wang, S. Liu, J. Li, C. Chen, H.
Yu, L. Hu, Matter 2020, 2, 390.

[13] H. Sun, G. Martius, Sci. Rob. 2022, 7, eabm0608.
[14] X. Han, X. Wu, L. Zhao, M. Li, C. Jia, Z. Li, J. Xie, G. Luo, P. Yang,

R. Boukherroub, Y. Türker, M. U. Özkaynak, K. B. Dönmez, Microsyst.
Nanoeng. 2024, 10, 107.

[15] R. Del-Rio-Ruiz, D. R. R. Silva, H. Suresh, H. Asci, D. M. Santos, A.
Sharma, G. Widmer, S. Sankusale, Device 2024, 2, 100406.

[16] Y. Zhou, W. Xu, Y. Ji, G. Zhou, W. Wu, Z. Chen, B. Wang, X. Gui, X. Li,
Appl. Phys. Rev. 2023, 10, 021407.

[17] A. Leber, C. Dong, R. Chandran, T. D. Gupta, N. Bartolomei, F. Sorin,
Nat. Electron. 2020, 3, 316.

[18] H. Jin, Y. Kim, W. Youm, Y. Min, S. Seo, C. Lim, C.-H. Hong, S.
Kwon, G. Park, S. Park, H. J. Kim, npj Flexible Electron. 2022, 6,
28.

[19] V. Adepu, C. Yoo, Y. Jung, P. Sahatiya, Appl. Phys. Lett. 2023, 122,
263505.

[20] A. Georgopoulou, D. Hardman, T. G. Thuruthel, F. Iida, F. Clemens,
Adv. Sci. 2023, 10, 2301590.

[21] J. R. Barber, Contact Mechanics, Springer, Berlin, Germany 2018.
[22] K. N. Calahan, Y. Qi, K. G. Johannes, M. E. Rentschler, R. Long, Sci.

Adv. 2022, 8, eabn2728.
[23] Y. Zhao, B. Zhang, B. Yao, Y. Qiu, Z. Peng, Y. Zhang, Y.

Alsaid, I. Frenkel, K. Youssef, Q. Pei, X. He, Matter 2020, 3,
1196.

[24] C. Lin, H. Zhang, J. Xu, L. Wu, H. Xu, IEEE Robot. Automat. Lett. 2024,
9, 923.

[25] S. Zhu, P. Wu, H. Yelemulati, J. Hu, G. Li, L. Li, Y. Tai, Matter 2021, 4,
1838.

[26] W. Lin, B. Wang, G. Peng, Y. Shan, H. Hu, Z. Yang, Adv. Sci. 2022, 8,
2002817.

[27] C. Xu, Y. Yang, W. Gao, Matter 2020, 2, 1414.
[28] S. Li, X. Chen, X. Li, H. Tian, C. Wang, B. Nie, J. He, J. Shao, Sci. Adv.

2022, 8, eade0720.
[29] C. Liu, Z. Huang, S. Huang, Y. Zhang, B. Li, F. Nan, Y. Zheng, ACS

Nano 2024, 18, 19391.
[30] Q. Wang, M. Li, P. Guo, L. Gao, L. Weng, W. Huang, Microsyst. Nano-

eng. 2024, 10, 103.
[31] L. Wijayarathne, Z. Zhou, Y. Zhao, F. L. Hammond, IEEE Trans. Robot.

2023, 39, 3549.
[32] K. S. Chun, Y. J. Kang, J. Y. Lee, M. Nguyen, B. Lee, R. Lee, H. H. Jo, E.

Allen, H. Chen, J. Kim, L. Yu, X. Ni, K. Lee, H. Jeong, J. Lee, Y. Park, H.
U. Cheung, A. W. Li, P. A. Lio, A. F. Yang, A. B. Fishbein, A. S. Paller,
J. A. Rogers, S. Xu, Sci. Adv. 2021, 7, eabf9405.

[33] W. Xu, G. Zhou, Y. Zhou, Z. Zou, J. Wang, W. Wu, X. Li, IEEE Trans.
Instrum. Meas. 2024, 73, 5026411.

[34] Y. Li, P. Bai, H. Cao, L. Li, X. Li, X. Hou, J. Fang, J. Li, Y. Meng, L. Ma,
Y. Tian, Nat. Commun. 2022, 8, eabm0984.

[35] S. Hong, V. P. Rachim, J.-H. Baek, S.-M. Park, npj Flexible Electron.
2023, 7, 30.

[36] N. F. Lepora, A. Church, C. Kerckhove, R. Hadsell, J. Lloyd, IEEE Robot.
Automat. Lett. 2019, 4, 2101.

[37] J. W. James, N. Pestell, N. F. Lepora, IEEE Robot. Automat. Lett. 2018,
8, 3340.

[38] R. Sui, L. Zhang, T. Li, Y. Jiang, IEEE Sens. J. 2021, 21, 25973.
[39] D. Baimukashev, Z. Kappassov, IEEE Robot. Automat. Lett. 2020, 5,

2618.
[40] J. D. Glover, X. Yang, R. Long, J. T. Pham, Nat. Commun. 2023, 14,

2362.
[41] F. P. Bowden, D. Tabor, Nature 1942, 150, 197.
[42] P. Zhu, V. A. Papadimitriou, J. E. van Dongen, J. Cordeiro, Y.

Neeleman, A. Santoso, S. Chen, J. C. T. Eijkel, H. Peng, L. I. Segerink,
A. Y. Rwel, Sci. Adv. 2023, 9, eadf5509.

[43] Z. Zou, Z. Li, Y. Zhou, G. Zhou, W. Xu, W. Wu, H. Zhang, Z. Chen, Z.
Dai, X. Li, Adv. Intell. Syst. 2024, 6, 2300535.

[44] J. Zhao, Y. Sun, Z. Zhu, J. E. Antonio-Lopez, R. A. Correa, S. Pang, A.
Schülzgen, ACS Photonics 2018, 5, 3930.

[45] Y. Rivenson, T. Liu, Z. Wei, Y. Zhang, K. D. Haan, A. Ozcan, Light: Sci.
Appl. 2019, 8, 23.

[46] F. Wang, C. Wang, C. Deng, S. Han, G. Situ, Photonics Res. 2022, 10,
104.

[47] C. Son, J. Kim, D. Kang, S. Park, C. Ryu, D. Baek, G. Jeong, S. Jeong,
S. Ahn, C. Lim, Y. Jeong, J. Eom, J.-H. Park, D. W. Lee, D. Kim, J. Kim,
H. Ko, J. Lee, Nat. Commun. 2024, 15, 8003.

Adv. Funct. Mater. 2025, 35, 2416731 © 2024 Wiley-VCH GmbH2416731 (11 of 11)

 16163028, 2025, 10, D
ow

nloaded from
 https://advanced.onlinelibrary.w

iley.com
/doi/10.1002/adfm

.202416731 by Peking U
niversity H

ealth, W
iley O

nline L
ibrary on [10/03/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.afm-journal.de

	A Real-Time Imaging Sensing System to Visualize Elastomer Surface Profile Evolution for Dynamic Tactile Recognition
	1. Introduction
	2. Results and Discussion
	2.1. Dynamic Deformation Recognition Scheme Based on Optical Image Representation
	2.2. Analysis of Image Features of Deformation During Sphere Movement
	2.3. Dynamic Real-Time Recognition of Deformation Application Scenarios

	3. Conclusion
	4. Experimental Section
	Supporting Information
	Acknowledgements
	Conflict of Interest
	Data Availability Statement

	Keywords


