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ABSTRACT: The c-axis piezoresistivity is a fundamental and
important parameter of graphite, but its value near zero pressure
has not been well determined. Herein, a new method for studying
the c-axis piezoresistivity of van der Waals materials near zero
pressure is developed on the basis of in situ scanning electron
microscopy and finite element simulation. The c-axis piezoresis-
tivity of microscale highly oriented pyrolytic graphite (HOPG) is
found to show a large value of 5.68 × 10−5 kPa−1 near zero
pressure and decreases by 2 orders of magnitude to the established
value of ∼10−7 kPa−1 when the pressure increases to 200 MPa. By
modulating the serial tunneling barrier model on the basis of the
stacking faults, we describe the c-axis electrical transport of HOPG under compression. The large c-axis piezoresistivity near zero
pressure and its large decrease in magnitude with pressure are attributed to the rapid stiffening of the electromechanical properties
under compression.
KEYWORDS: graphite, in situ SEM, c-axis stress, c-axis piezoresistivity, indentation

Graphite is a typical layered van der Waals material with
high structural anisotropy and shows highly anisotropic

electrical transport properties with c-axis electrical resistivity
that is approximately 2−4 orders of magnitude larger than the
in-plane resistivity.1,2 The c-axis electrical transport across the
van der Waals interacting layers of graphite and its response to
the compression pressure are fundamental properties of
graphite. Understanding these properties is also helpful for
elucidating the c-axis electrical transport of graphite and the
van der Waals interaction of other layered van der Waals
materials. Despite the long and intensive study of graphite, the
response of its c-axis resistivity to the uniaxial stress at small
pressures has not been well determined in experiments,
especially near zero pressure.
Previous studies of the piezoresistivity of graphite typically

utilized hydrostatic experiments to compress the volume of
materials,3−5 showing that the resistivity decreases nonlinearly
with increases in pressure. The typical values of c-axis
piezoresistivity in the pressure range of 0−5 GPa inferred
from the literature are approximately 8.89 × 10−8 to 2.5 × 10−7

kPa−1.4,6 However, an isotropic hydrostatic experiment is not
ideal for measuring c-axis piezoresistivity because isotropically
applied pressure strongly couples in-plane and out-of-plane
deformations7,8 and larger samples likely contain more
defects.6 The nonlinear piezoresistive response was observed
at approximately 1−30 GPa,5,9 however, the linear c-axis
piezoresistive response of graphite near zero pressure is still

unknown. Some other methods for deforming van der Waals
materials may be used to study the piezoresistive response of
graphite, including bending,10,11 wrinkling,12 forming a micro-
chamber13 and bubbles,14,15 etc. However, complex strain
fields are introduced as part of those methods. Indention by
the conductive probe of the atomic force microscope (AFM) is
a straightforward method for studying the c-axis piezoresistive
properties of van der Waals materials. However, on one hand,
the contact mechanics between the AFM probe and tested
sample is rather complicated and the actual contact area of the
AFM probe is impossible to determine precisely,16−18 which
prevent the determination of the c-axis pressure. On the other
hand, mechanical loading through a sharp AFM probe may
cause highly non-uniform strain19−22 and potential physical
damage to the surface of samples, which are detrimental to the
accurate extraction of c-axis piezoresistivity. All of the existing
methods are therefore not suitable for studying the c-axis
piezoresistive properties of van der Waals materials under c-axis
stress, especially near zero pressure.
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In this work, we develop a method for in situ measurement
of c-axis piezoresistive properties of van der Waals materials
under direct uniaxial pressure and study the c-axis piezor-
esistivity of highly oriented pyrolytic graphite (HOPG) near
zero pressure. After fabricating micrometer-scale metal/graph-
ite/metal islands on a SiO2/Si substrate, we achieve c-axis
uniaxial pressure loading in a fine step of ∼1 MPa and
simultaneous c-axis resistivity measurement of graphite using
an in situ scanning electron microscope (SEM) equipped with
nanomanipulators. We observe a large c-axis piezoresistivity of
HOPG up to 5.68 × 10−5/kPa near zero pressure and a large
magnitude decrease from 5.68 × 10−5/kPa to 1.91 × 10−7/kPa
when the pressure increases from 0 to 200 MPa. The decrease
in c-axis piezoresistivity is attributed to the stiffening of HOPG
under compression.
Our experiments are performed in situ inside a SEM

equipped with two nanomanipulators. One nanomanipulator
was used to hold the tested samples, and the other was used to
manipulate a tungsten (W) probe with radii in the range of
100−500 nm. The experimental setup is schematically shown
in Figure 1a. The tested samples are connected to a spring that
is fixed to the holding nanomanipulator and is used to record
the force applied to the tested sample when the spring is
indented by the W probe. The force is obtained through the
formula F = kd, where k is the elastic coefficient of spring and d
is the displacement of the substrate, which can be directly
measured by SEM images. The elastic coefficient was well
calibrated as shown in Figure S1. Our samples for
piezoresistive measurements are 3 μm wide circular islands
with a metal (200 nm Au/20 nm Ti)/graphite (100−300
nm)/metal (150 nm Au/20 nm Ti) stacked structure
fabricated on a SiO2/Si substrate. Panels b and c of Figure 1

show the SEM images of our samples and piezoresistive
measurement of one sample by a W probe. The typical
thickness of graphite in our tested samples is 280 nm, as
determined by AFM as shown in Figure S2. To measure the
piezoresistive response of a metal/graphite/metal island, the W
probe is manipulated to indent the island, and its current−
voltage (I−V) curves are simultaneously measured (see Video
1). The resistance of metal/graphite/metal islands is obtained
from the linear I−V curves at a low bias. The details of
fabrication of the samples and piezoresistive measurements are
available in the experimental section of the Supporting
Information.
To ensure the reliability of electrical measurements, we first

measured the c-axis resistivity of HOPG without applying c-axis
stress. To measure the c-axis resistance of HOPG, we also
fabricated comparative samples, which exhibit the same
circular shape in the same sizes as the normal samples except
without a graphite film sandwiched between metal films. The
resistance of comparative samples gives parasitic resistance Rp
(including those of the W probe, metal film, probe−metal disk
contact, etc.) of the circuit (see Figure S3a). The perfectly
linear and symmetric I−V characteristics prove the good ohmic
contact among the W probe, metals, and graphite. After
measuring the resistance (R) of the normal samples, we can
obtain the c-axis resistivity of graphite through the formula ρ =
(R − Rp)S/tG, where S is the area of the sample and tG is the
thickness of the graphite film. Figure 1d shows the c-axis
resistivities of HOPG measured from samples fabricated from
three different graphite sheets. One can see that the c-axis
resistivities are ∼0.49 Ω cm. The good agreement between our
measured c-axis resistivity and those published in previous

Figure 1. In situ piezoresistive measurement of graphite. (a) Schematic drawing of the in situ measurement setup. (b) SEM image of graphite
islands and their piezoresistive measurement by a tungsten (W) probe. The inset shows the cross-sectional structure of our fabricated graphite
islands. (c) Enlarged SEM image showing indentation of graphite by a W probe. The W probe is aligned to the normal of the Au/Ti disk on the top
of the graphite island. (d) c-Axis resistivity of graphite without c-axis pressure measured from the samples fabricated from different graphite sheets.
(e) Current−voltage (I−V) curves of a graphite island under a low bias while subjecting the graphite to c-axis stress loading and releasing. (f) c-Axis
resistance vs c-axis stress of the sample as extracted from panel e.
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papers1,6 indicates the good reliability of our electrical
measurements.
The metal/graphite/metal islands are found to exhibit a

remarkable piezoresistive response when they are indented by
W probes. Figure 1e shows the c-axis transport of a sample
when a c-axis force of 25 μN was gradually loaded and released.
Linear I−V curves at low bias were observed to show decreases
in resistance with an increase in stress. A reversible
piezoresistive response was observed during stress loading
and releasing. To confirm the origin of the observed
piezoresistive response, we performed the same measurements
on a comparative sample without a graphite film and no
piezoresistive response was observed (see Figure S3b). This
indicates that our observed piezoresistive response does come
from the graphite film of our samples. Figure 1f shows the c-
axis resistances of graphite under different c-axis stresses as
extracted from Figure 1e. The graphite sample is found to
show an approximately linear decrease of c-axis resistance from
279.9 to 124.7 Ω when a stress of 25 μN is applied.
The precise interpretation of the c-axis piezoresistive

response of a graphite sample requires extraction of the c-
axis pressure from the applied load. This extraction, however,
needs to be considered because the region in which the
graphite is compressed is to be determined (Figure 2a,b).
There are two natural limits. When the top electrode is highly
bendable, the graphite sample would be subject to c-axis
deformation, prescribed by the geometry of the W probe.
Alternatively, when the top electrode is so thick that it can be
considered rigid, the entire graphite sample would be
compressed nearly uniformly. The challenge, therefore,
comes from the fact that the reality lies between the two
limiting cases.
To gain quantitative insights, we perform numerical

simulation of this indentation problem using the finite element
method (FEM) with the anisotropic properties of graphite
considered. It is clear that the graphite sample is deformed not
only in the loading region (of radius a, i.e., the contact radius

of the W probe) but also over a certain horizontal length LW as
illustrated in Figure 2b. We show the deformation of the
graphite sample subject to various indentation forces in Figure
2d and that using different probe radii in Figure 2e. Given the
slenderness of the graphite sample, we may use Winkler’s
mattress model23 to describe its elastic response so that the
stiffness of the mattress is proportional to EG/tG, where EG and
tG are the c-axis modulus and thickness of the graphite sample,
respectively. It is then natural to choose the Winkler length to
characterize L B t E( / )W eff G G

1/4= , where Beff is the effective
bending stiffness of the Ti/Au disk.
Our simulations have indicated the non-uniform deforma-

tion of the graphite under an indentation force F or
displacement δ. However, an equivalent deformation length
Leff over which the graphite sample is uniformly compressed
(see the illustration in Figure 2c) is needed to make the
piezoresistive analysis possible. To this end, we apply a
mechanical equivalence F = EGϵGAeff, where ϵG = δ/tG and Aeff
= πLeff2, so that Leff can be determined using FEM simulations
(more details in Section II of the Supporting Information).
This suggests that the non-uniform deformation of the graphite
sample over the entire sample size under indentation force F
and displacement δ is equivalent to the uniform deformation of
the sample over length Leff under the same force and
displacement (Figure 2a−c). Apparently, Leff depends on
both contact radius a and Winkler length LW. One can expect
that Leff is on the order of the loading probe radius as LW → 0
and Leff equals the size of the entire graphite sample as LW →
∞ (i.e., the Ti/Au disk becomes rigid).
Indeed, the inset of Figure 2f shows that Leff increases as LW

or a increases. Interestingly, because there are only three length
scales involved so far, we can establish a simple relationship
between Leff and the mechanical and geometrical parameters in
our systems by
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Figure 2. Simulation of indentation by the finite element method (FEM). Schematic diagrams showing the sectional structure of a metal/graphite
island (a) before and (b) after indention by a probe. tG is the thickness of graphite; a is the contact radius of the W probe, and LW is the horizontal
length of the actual indentation. (c) Schematic diagram showing that non-uniform indentation in panel b can be regarded as an equivalent uniform
indentation of radius Leff. (d) Indentation profiles of a metal/graphite island subject to various indentation forces F when considering a = 250 nm
and Au/Ti disk = 100 nm/20 nm. x represents the radial coordinate. (e) Indentation profiles of a metal/graphite island subject to various contact
radii of the W probe (a = 100, 300, 500, and 700 nm) when F = 40 μN. (f) Relationship among equivalent deformation length Leff, Winkler length
LW, and probe radius a. Symbols are results of the FEM, and the solid line is the fitting line with eq 1. The inset shows the dependence of Leff on LW
with different probe radii a.
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where C0 ≈ 70 nm/a − 0.0786, C1 ≈ 0.159, C2 ≈ 1.4720, and
C3 ≈ 0.489 are fitting constants based on the simulation
results. Figure 2f shows that eq 1 approximates very well for a
range of our experimental parameters, including indentation
forces, probe radii, electrode thicknesses, graphite thicknesses,
etc. This simple relationship also allows us to readily determine
Leff for given values of a and Beff, leading to a much more
reasonable approximation of the deformation area for
piezoresistive analysis than the direct use of either the contact
radius of the probe or the radius of the graphite sample (to be
shown below). After obtaining Leff for given values of a and
Beff, one can obtain the c-axis pressure of the tested samples
from the applied load.
As the deformation of graphite film under indentation of the

probe is equivalent to the uniform deformation in the area with
radius Leff, the piezoresistive response observed in Figure 1f is
thought to be contributed by the graphite film with radius Leff.
The graphite film in our samples is divided into the deformed
region (purple area) with radius Leff and the surrounding
undeformed region (gray area) as shown in Figure 3a. Due to
the anisotropic conductivity of graphite,1,2 reaching 3.6 × 104,

the current will thoroughly extend across the whole cross
section and the two regions are considered to be connected in
parallel. A sufficiently large graphite sample ensures that bulk
contact rather than edge contact dominates.24 The resistance
of the deformed region under pressure can be written as Rdeform
= RtotalRundeform/(Rundeform − Rtotal), where Rtotal is the resistance
of the whole graphite film as measured in Figure 1f and
Rundeform is the resistance of the undeformed region. Rundeform is
obtained from the equation Rundeform = Rtotal0 r2/(r2 − Leff2),
where Rtotal0 is the resistance of the whole graphite film with
zero pressure and r is the radius of the whole graphite film.
Neglecting the shrinkage of the graphite thickness, one can
write the resistivity of graphite under pressure as ρ =
Rdeform(πLeff2)/tG. Figure 3b shows the normalized c-axis
resistivity of graphite under different pressures. One can see
that the c-axis resistivity of graphite decreases fast with pressure
at first and then decreases slowly.
In general, if the relationship between resistivity and

pressure is linear, piezoresistivity can be directly calculated
with the equation π0 = (dρ/ρ0)/P, where ρ0 is the resistivity at
zero pressure and P is the applied pressure. To fully describe

Figure 3. Piezoresistive properties of HOPG samples under c-axis stress. (a) Schematic diagram of the c-axis resistance of a graphite island under
load. Rdeform (Rundeform) is the resistance of the central (edge) region under (without) load. Rtotal is the resistance of the whole graphite film. (b)
Plots of normalized resistivity vs c-axis pressure. Different shapes of marks come from different samples. (c) c-Axis piezoresistivity (πP) of HOPG at
different pressure. The same symbols in panels b and c correspond to the data from the same samples. The blue square marked with an error bar
shows the data from previous hydrostatic experiments in refs 4 and 6.

Figure 4. (a) Schematic drawing of the serial tunneling barrier model, in which multiple identical rectangular tunneling barriers are connected in
series. (b) Schematic drawing showing the decrease in the width of tunneling barriers under pressure. (c) Nonlinear I−V characteristics of a sample
under 0 and 68 MPa and fittings with the serial tunneling barrier model. (d) c-Axis apparent modulus of our samples at different pressures. The data
points for different colors come from different samples.
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the nonlinear c-axis piezoresistive response of our samples, we
here adopted first-order piezoresistivity πP at pressure P:

P(d /d )/P 0= (2)

Figure 3c shows the first-order piezoresistivity of different
samples at 7, 20, 60, 100, and 200 MPa. As the c-axis pressure
increases from 0 to 200 MPa, the c-axis πP decreases from 5.68
× 10−5 to 1.91 × 10−7 kPa−1. The values of c-axis πP extracted
from previous hydrostatic experiments are included for
comparison.4,6 As the c-axis pressure approaches 200 MPa, c-
axis πP gradually reproduces the results reported by hydrostatic
experiments in the literature. For comparison, πP values of
some common materials, such as III−V, IV−VI group
semiconductors and previously reported graphite,4,6,25−39 are
summarized in Figure S4. The obtained c-axis piezoresistivity
of HOPG present here in a small pressure range (0−20 MPa)
is higher than that of most materials reported previously.
The c-axis resistivity in HOPG includes a series of

hindrances to transport, such as wrinkles, voids, dislocations,
impurities, stacking faults, etc.40−47 Among them, the
tunneling barriers induced by stacking faults were reported
to dominate the c-axis resistivity at room temperature.46

Because the thickness of our graphite films is much larger than
the mean distance between two stacking faults (4−10 nm),46,47
a serial tunneling barrier model, in which multiple identical
rectangular tunneling barriers is connected in series, is assumed
to describe the c-axis electron transport in our samples as
shown in Figure 4a. The effect of pressure on the c-axis
electron transport is assumed to decrease the width of
rectangular tunneling barriers (Figure 4b), that is, the tunnel
length. To verify the validity of the model, the general
Simmons tunneling formula is adopted to describe I−V curves
of our samples (see eq S1 of the Supporting Information).48,49

Figure 4c shows that the nonlinear I−V curves of a sample
both with and without pressure can be well fitted by the
general Simmons tunneling formula.
To describe the piezoresistive response of our samples, the

Simmons tunneling formula near zero voltage (see eq S2 and
Figure S5) is adopted to describe the linear I−V curves at low
voltages as shown in Figure 1e.48,49 It gives the c-axis resistance
of deformed graphite films under pressure P as

R
nd

A e
d

8
exp( )P

Pdeform

2

2=
(3)

where dP is the width of rectangular tunneling barriers under
pressure, A is the effective tunneling area, n is the number of
stacking faults, and m2(2 ) /c

1/2= with φ = 4.5 eV being
the height of the tunneling barrier,50−52 mc = 12me being the
effective mass of electrons along the c-axis,53,54 and ℏ being the
reduced Planck constant. Assuming the shrinkage of tunneling
barriers or the interlayer distance of stacking faults is
proportional to pressure P with an apparent c-axis modulus
of E, dP can be written as dP = d0(1 − P/E), where d0 = 0.34
nm is the width of the tunneling barrier at zero pressure. It
should be noted that the apparent modulus here is different
from the elastic constant in mechanical measurements and
expresses the “hardness” of electromechanical properties
obtained by fitting the serial tunneling barrier model. Taking
the formula of dP and Rdeform = ρtG/S into eq 3, we obtain

d P
E

1
1

expP
E0

0i
k
jjjj

y
{
zzzz=

(4)

Adding the measured resistivity and the corresponding
pressure shown in Figure 3b to the equation presented above,
we obtained the apparent modulus for different pressures, as
shown in Figure 4d. One can see that when the pressure
increases to ∼200 MPa, the apparent modulus increases with
pressure from <1 to ∼20 GPa, which is a reasonable value for
the c-axis modulus of HOPG in previous experiments.20,55−58

The apparent modulus under high pressure is much larger than
that near zero pressure, showing a significant stiffening effect in
the c-axis electromechanical properties. The small apparent
modulus near zero pressure and the significant stiffening effect
of electromechanical properties are thought to be responsible
for our measured large c-axis piezoresistivity near zero pressure
and its decrease by a large magnitude with pressure.
The much smaller apparent modulus near zero pressure can

be attributed to the following. First, as the high pressure on the
order of gigapascals applied in hydrostatic experiments induces
a nonlinear mechanical response of graphite,5,59,60 the
softening of the elastic modulus near zero pressure compared
with that obtained in high-pressure experiments is reasonable.
Second, the interlayer distance between some stacking layers in
graphite can be larger than that of perfect graphite due to the
defects like edge dislocations,61 interlayer rotation,62,63

impurities,64,65 etc. This is thought to result in the softening
of interlayer compression at low pressure. Third, while c-axis
compression is assumed to induce only the shrinkage of
rectangular tunneling barriers in our transport model as shown
in panels a and b of Figure 4, some other effects of
compression may also exist, such as the increase in the
effective transport area, reduction of tunneling barriers, etc.
The neglect of these effects may also result in a small apparent
modulus near zero pressure.
In conclusion, we develop a new method for studying the c-

axis piezoresistivity of van der Waals materials near zero
pressure on the basis of an in situ scanning electron microscope
and finite element simulation. Upon application of the method,
the c-axis piezoresistivity of HOPG is studied. Our HOPG
samples are found to show a large c-axis piezoresistivity of
≤5.68 × 10−5 kPa−1 near zero pressure and decreases by 2
orders of magnitude to an established value of ∼10−7 kPa−1

when the pressure increases to 200 MPa. The decrease in c-axis
piezoresistivity is attributed to the stiffening of electro-
mechanical properties under compression. The c-axis apparent
modulus is obtained by describing the c-axis electrical transport
of HOPG with a serial tunneling barrier model.
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