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Analytical Solutions for Circular
Elastic Membranes Under
Pressure
This study investigates the problem of a circular elastic membrane clamped or adhered at
its boundary and subjected to uniform transverse pressure. Many analytical solutions for
this classical problem have been developed previously, using either a series-based
approach (notably accurate but lengthy and implicit) or approximate kinematics (relatively
simple yet lacking accuracy). Here, we seek new analytical solutions using a perturbed
spherical cap to represent the shape of the pressurized membrane. Our approach yields
simple, explicit solutions of remarkable accuracy for the deformed profile, pressure–deflec-
tion relation, strain distributions, and energy release rate, which are directly applicable to
emerging ultrathin membrane systems. [DOI: 10.1115/1.4065338]
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1 Introduction
The widespread use of circular elastic membranes across various

applications, including blister tests, pressure sensors, field-effect
transistors, and lightweight structures [1–5], has sparked significant
interest in pressure-loaded or pressurized circular membranes. Spe-
cifically, there is considerable focus on a scenario where the
deformed geometry demonstrates large deflection alongside moder-
ate rotation [2,3,6]. The large deflection (relative to the membrane
thickness) allows the plate bending to be ignored, while themoderate
rotation allows the use of linear material laws. In this context, the
Föppl membrane theory, or the membrane limit of the Föppl-von
Kármán equations, is commonly employed to characterize the
mechanical response of pressurized membranes [7–11]. Despite its
apparent simplicity, the involvement of nonlinear kinematics in
solving this set of equations poses challenges. As a result, existing
analytical solutions in literature often tend to be either implicit and
lengthy [7,12,13] or prone to accuracy issues [2,14–17] (which
will be detailed shortly). In this work, the objective is to derive ana-
lytical solutions that offer both simplicity and accuracy. We demon-
strate that achieving this is possible simply by utilizing a perturbed
spherical cap to represent the shape of pressurized membranes.

2 The Problem
Figure 1 shows the schematics of the problem of pressurized cir-

cular elastic membranes. With axisymmetry, we can write the gov-
erning equations in terms of displacements [3,19], which include
the in-plane equilibrium equation:
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Here, u and w denote the displacements in-plane and out-of-plane,
respectively. E, t, and ν represent Young’s modulus, thickness, and
Poisson’s ratio of the membrane, while p is the applied pressure.
Solving the problem with a pinned edge at r = a can be readily
achieved numerically by incorporating boundary conditions such
as u(0) = w′(0) = u(a) = 0. In the case where the edge of
the membrane is unpinned (as depicted in the right panel of
Fig. 1), the solution involves the determination of the edge radius.
Here, we apply Griffith’s criterion G = Gc, where G is the energy
release rate and Gc represents the critical energy release rate associ-
ated with the delamination of the membrane from the substrate
[20,21]. For the sake of simplicity, we overlook mode mixity at
the interface and assume a constant membrane–substrate adhesion
(Gc = Γ) [5,22].
Analytical relations for this problem are of significant practical

importance. For example, a cubic pressure–deflection relation has
been extensively discussed [2,14–16,23–25], represented by:

p = ζ(ν)Et
h3

a4
(3)

where h denotes the pressurized height at r = 0, and the prefactor ζ
is dependent solely on Poisson’s ratio. In addition, the strain
components in pressurized membranes are found to be proportional
to the square of the aspect ratio [2,9,15], a factor used in strain
engineering for 2D materials [4,6,26–28]. In particular, the
equal biaxial strain at the membrane center can be expressed as
follows:

ϵ0 = ψ(ν)
h2

a2
(4)
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whereψ is a constant. In scenarioswhere the edge of themembrane is
allowed to delaminate from the substrate under a volume-controlled
condition [10,16,29–31], the height and radius of the membrane are
not independent. The interplay between elastic and adhesive forces
has been observed to result in a constant aspect ratio (as depicted
in Fig. 1(b)). This relationship can be represented as follows:

Γ = ϕ(ν)Et
h4

a4
(5)

where ϕ is a constant. Alternatively, in pressure-controlled setups
such as blister tests, significant attention has been devoted to the crit-
ical pressure required for the blow-off of the membrane [12,23]

Gc = φ(ν)
p4ca

4

Et

[ ]1/3
(6)

where φ is constant. Apparently, φ = ϕ3/ζ4.

As summarized in Table 1, there have been roughly two primary
analytical approaches directed toward determining the prefactors
in Eqs. (3)–(6). One approach stems from Hencky’s series solution
to the nonlinear problem of pinned membrane edges [7,13].
Hencky’s solution comprises seven terms addressing the
out-of-plane deformation and the radial stress, given by:

w ∼
∑7
n=0

a2n 1 − r2n+2
( )

and Nrr ∼
∑7
n=0

b2nr
2n (7)

Constants a2n and b2n can be explicitly interconnected through equi-
librium equations and boundary conditions, whereas the determina-
tion of b0 requires solving an implicit characteristic equation
[7,13]. As a result, prefactors in Eqs. (3)–(6) are often calculated
for specific Poisson’s ratios [12,14,18,23,29,30,33,34]. An alternative
approach presumed either a spherical cap configuration for the pre-
ssurized membrane or constant stresses within the membrane (es-
sentially equivalent to assuming a spherical cap shape) [2,15,16,23]:

Fig. 1 Schematics of circular membranes clamped (a) and adhered (b) at the boundary. The focus is on the mechan-
ical response of the elastic membrane under pressure loads, including the pressure–deflection relation, strain dis-
tributions, and the energy release rate when the membrane edge is allowed to delaminate from its adhered
substrate. (c) Experimentally measured profiles of pressurized single-layer graphene membranes (data associated
with Refs. [16,18]). The graphene is pressurized by a given amount of gas molecules with increasing height. The
edge is first fixed (pinned) and then unpinned due to the delamination between the membrane and its substrate.
Scale bars: 2 μm.

Table 1 A summary of the methods and assumptions involved in previous analytical solutions to the pressurized elastic membrane
problem

Reference Methodology Assumption

Hencky [7] Equilibrium equations Variables in a series form of seven terms
Gent and Lewandowski [12] Hencky’s solution Specific Poisson’s ratios
Wan and Mai [29] Hencky’s solution Specific Poisson’s ratios
Fichter [13] Equilibrium equations Variables in a series form of ten terms
Williams [23] Equilibrium equations Constant stresses
Wan and Lim [32] Equilibrium equations Constant stresses
Freund and Suresh [2] Energy approach Spherical cap shape and simplified displacement
Koenig et al. [30] Hencky’s solution Specific Poisson’s ratios
Yue et al. [15] Energy approach Spherical cap shape and simplified displacement
Sanchez et al. [33] Energy approach Spherical cap shape and simplified displacement
Dai et al. [16] Equili equations Spherical cap shape
Blundo et al. [25] Equilibrium equations Similar to solution I
Solution I (this work) Equilibrium + energy approach Perturbed spherical cap shape
Solution II (this work) Equilibrium + energy approach Perturbed spherical cap shape
Solution III (this work) Equilibrium + energy approach Perturbed spherical cap shape

Note: These models are valid for membranes of no residual stress, vanishing bending stiffness, and moderate rotation.
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Utilizing this, together with an energy-basedmethod, yields straight-
forward explicit expressions for the prefactors as functions of Pois-
son’s ratio, which, unfortunately, are susceptible to reduced
accuracy [33]. In the subsequent section, we provide analytical solu-
tions for the prefactors that can be presented in simple, explicit forms
and, at the same time, offer an accuracy level comparable to
Hencky’s series solution. The analytical results will be compared
with the numerical results of Eqs. (1) and (2), which are solved by
discretizing the domain into finite difference grids and using a
Newton–Raphson method with successive overrelaxation [19,24].

3 Analytical Approach and Results
The crux of our analytical approach lies in the shape of the pressur-

ized membrane. The observation from numerics in Fig. 2 is that this
shape deviates slightly from that of a spherical cap. We then look for
minor adjustments, specifically the following three variations:
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with |α(ν)|, |β(ν) − 1|, |ε(ν)| ≪ 1, and N(ν) > 1 (to avoid stress sin-
gularity at the origin). To solve the in-plane displacement u(r), we
directly use the in-plane equilibrium equation (1), rather than assum-
ing a kinematically admissible in-plane displacement field that
would introduce more unknown constants.
We can then obtain the strain fields according to the kinematics

ϵrr =
du
dr

and ϵθθ =
u

r
(10)

and the stress fields according to Hooke’s law

Nrr =
Et

1 − ν2
ϵrr + νϵθθ( ) and Nθθ =

Et

1 − ν2
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We use an energy method to determine the unknown constants in
Eq. (9). Specifically, the total energy of the system can be written
as follows:

F = 2π
∫a
0

1
2
Nrrϵr +

1
2
Nθθϵθθ

( )
r dr − pV + πa2Γ (12)

where the volume of the pressurized membrane is

V = 2π
∫a
0
wr dr (13)

We first calculate the prefactor for the pressure–deflection relation
in Eq. (3) and the strain magnitude at the center of the membrane
in Eq. (4). This can be achieved by minimizing the total energy
with a pinned membrane edge, i.e.,

∂F
∂h

∣∣∣∣
a

= 0 and
∂F
∂c
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a

= 0 (14)

where c is the parameter α, β, or ϵ and N depending on which var-
iation in Eq. (9) is used. To calculate the prefactor for the adhesion–
strain energy relation in Eq. (5) or the critical energy release rate in
Eq. (6), we focus on a displacement-controlled situation (particu-
larly loaded by an incompressible liquid [35]) with a no-pinning
condition, i.e.,

∂F
∂a

∣∣∣∣
V

= 0 (15)

Equations (9)–(15) complete the process of our analytical approach.

3.1 Solution I. We begin by trying the first variation of the
shape of the pressurized membrane in Eq. (9), i.e.,

w(r) = h 1 −
r

a

( )2+α[ ]
(16)

The corresponding volume is

V =
2 + α

4 + α
πa2h (17)

Using the in-plane equilibrium Eq. (1) and the kinematic relations in
Eq. (10) can give:
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where

ψ(α, ν) =
(2 + α)(3 + 2α − ν)

8(1 + α)
(19)

Now the total energy of the system can be rewritten in terms of h, a,
and α as follows:

F (α, h, a) =
π(2 + α)2(7 + 4α − ν)
32(3 + 2α)(1 − ν)

Et
h4

a2
−
2 + α

4 + α
πpa2h + πa2Γ

(20)

For a fixed a, the minimization of the total energy with respect to h
leads to p = ζ(α, ν)Eth3/a4 with

ζ(α, ν) =
(2 + α)(4 + α)(7 + 4α − ν)

8(3 + 2α)(1 − ν)
(21)

Alternatively, the minimization with respect to α gives

α(ν) ≈
����������������������
1025 − 742ν + 41ν2

√
− 15 − 3ν

50 − 2ν
(22)

where we have dropped terms of the order of α3 in calculations.
Finally, for membranes with unpinned, adhesive edges subject to
volume-controlled loads, the total energy reads

F (a, V) =
(4 + α)4(7 + 4α − ν)

32π3(2 + α)2(3 + 2α)(1 − ν)

EtV4

a10
+ πa2Γ (23)

It is clear that the elastic energy favors large a, while the adhesion
favors small a. The competition leads to Γ = ϕ(α, ν)Eth4/a4 with

ϕ(α, ν) =
5(2 + α)2(7 + 4α − ν)
32(3 + 2α)(1 − ν)

(24)

These results based on Eq. (16) will be referred to as “solution I”
and compared against other solutions.

3.2 Solution II. We move on to derive solution II using the
second variation in Eq. (9), i.e.,

w(r) = h 1 −
r

a

( )2[ ]β
(25)

Following similar steps in the preceding subsection, we can readily
obtain the volume

V =
π

1 + β
a2h (26)

the strain fields
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as well as the three prefactors including
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where

β(ν) ≈
��������������������������
7625 + 3026ν − 2551ν2

√
+ 907 − 373ν

1064 − 440ν
(31)

3.3 Solution III. We find that solutions based on the first two
perturbed spherical cap shapes fail to deliver satisfactory outcomes.
This can also be seen from Fig. 2, showing the disparity between the
perturbed shapes generated by Eqs. (16) and (25) and the corre-
sponding numerical results of the nonlinear problem (1) and (2)
(calculated using a regular finite difference method). We then
delve into solution III, which is based on the third variation outlined
in Eq. (9). We use R = r/a to rewrite the solution as follows:

w(r) =
h

1 + ε
1 − R2
( )

+ ε 1 − RN
( )[ ]

(32)

The selection of the parameter N here requires careful consider-
ation. While it seems intuitive to opt for N = 4, 6, 8, and so forth,
our analysis reveals that the resultant accuracy does not exhibit

significant improvements over solutions I and II. Furthermore,
our attempts to refine the solution by employing an expression
such as w ∼ (1 − R2) + ε(1 − R4) + ε2(1 − R6) only led to lengthy
expressions without yielding significant advantages over
Hencky’s series solution. Intriguingly, setting

N = 5

resolves this issue. In this context, the volume of the pressurized
membrane becomes:

V =
7 + 10ϵ
14(1 + ε)

πa2h (33)

and the strain fields can be given by:

ϵrr =
f (ε, ν) − 56(1 − 3ν)R2 − 64(1 − 6ν)R5ε − 35(1 − 9ν)R8ε2

224(1 + ε)2

(34a)

ϵθθ =
f (ε, ν) − 56(3 − ν)R2 − 64(6 − ν)R5ε − 35(9 − ν)R8ε2

224(1 + ε)2

(34b)

where f (ε, ν) = 56(3 − ν) + 64(6 − ν)ε + 35(9 − ν)ε2. The prefac-
tors specified in Eqs. (3)–(6) can then be derived:

ψ(ε, ν) =
56(3 − ν) + 64(6 − ν)ε + 35(9 − ν)ε2

224(1 + ε)2
(35)

Fig. 2 (a) Shape of the pressurized membrane and (b) its zoom-in view. The markers are obtained by numerically
solving the problem (1) and (2). The expressions for the spherical cap, solution I, solution II, and solution III are
given in Eqs. (8), (16), (25), and (32), respectively, where the parameters depending on Poisson’s ratio are solved
in Eqs. (22), (31), and (38), respectively. Here, ν= 0.
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ζ(ε, ν) =
7 − ν

3(1 − ν)
+
149 + 13ν
63(1 − ν)

ε + O(ε2) (36)

ϕ(ε, ν) =
5(7 − ν)
24(1 − ν)

+
5(53 + ν)
126(1 − ν)

ε + O(ε2) (37)

where

ε(ν) ≈
987 − 231ν − 7

���������������������������
10985 + 3878ν − 3199ν2

√

12(139 − 67ν)
(38)

Note that ζ and ϕ, provided up to O(ε2), offer sufficient accuracy
due to the condition ε ≪ 1. In addition, as ε � 0, these solutions
return to those based on the assumption of a spherical cap shape
such as in Ref. [16]. In Fig. 2, it can be found that the shape
defined in Eq. (32) with N = 5 and in Eq. (38) shows excellent

agreement with numerics. In the ensuing section, we focus on com-
paring the prefactors ψ , ζ, ϕ, and φ = ϕ3/ζ4 obtained from solutions
I, II, and III with the numerical results.

4 Discussion
4.1 Strain Distributions. Figure 3 shows the equal biaxial

strain (rescaled by h2/a2) in the center of the pressurized membrane
as a function of the Poisson’s ratio of the material. The plotted
markers are derived from numerical calculations of the nonlinear
equilibrium Eqs. (1) and (2) through a finite difference method.
We find that Eq. (35), as solution III, demonstrates remarkable
agreement with the numerical results, exhibiting an error margin
only within 0.16%. Notably, this performance surpasses Hencky’s
series solution (with an error approximately around 0.31%),
which requires solving a lengthy, implicit equation [7,13]. In
Fig. 3, the solution by Dai et al. used the spherical cap assumption
[16]. The solution by Blundo et al. involved fitting the numerical
results, akin to setting α = 2.2 in Eq. (22) of solution I (the error
is identified to be within 1.9%) [25]. Figure 4 presents a comparison
between different analytical solutions and numerical calculations
regarding radial and hoop strain distributions. Clearly, solution
III, as provided in Eq. (34), continues to exhibit excellent accuracy.

4.2 Pressure–Deflection Relation. Figure 5 illustrates the pre-
factor governing the cubic pressure–deflection relationship (refer to
Eq. (3)) in relation to the Poisson’s ratio of the material. We find that
the accuracy of all three solutions derived from perturbed spherical
cap shapes—expressed in Eqs. (21), (29), and (36), respectively—
demonstrates considerable improvement compared to the solution
assuming an exact spherical cap shape (as demonstrated in prior
works such as Refs. [2,15,16,23]). In particular, the error of solution
III, i.e., Eq. (36), remains within 0.5%. This level of accuracy is
comparable to Hencky’s implicit series solution (at 0.3%) [7,13]
and the fitting of numerical results (also at 0.3%), i.e.,

ζ(ν) ≈ (0.7179 − 0.1706ν − 0.1495ν2)−3

detailed in Ref. [24]. Note that alternative explicit solutions, includ-
ing those presented in [2,15,16,23] and the model derived from the
fitted α ≈ 2.2 in [25], exhibit an error of at least 5%.

Fig. 3 The rescaled strain at the center of the pressurized mem-
brane (i.e., ψ in Eq. (4)) as a function of Poisson’s ratio. The ana-
lytical expressions of solutions I, II, and III are given in Eqs. (19),
(28), and (35), respectively. The solution by Dai et al. and Blundo
et al. can be found in Refs. [16] and [25], respectively. Hencky’s
solution is derived based on the corrected calculation outlined
in Ref. [13].

Fig. 4 The rescaled radial (a) and hoop (b) strain distribution (here, ν= 0). The analytical expressions of solutions I,
II, and III are given in Eqs. (18), (27), and (34), respectively. The solution by Dai et al. and Blundo et al. can be found in
Refs. [16] and [25], respectively, while the solutions in Refs. [2] and [15] are identical. Here, we used ν = 0 for demon-
stration. In this case, the maximum ϵrr occurs at r = 0. When ν ≳ 0.297, however, the maximum ϵrr will occur at r = a.
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4.3 Energy Release Rate. Finally, we discuss our solutions
for the scenario of unpinned membrane edges. Figure 6 plots the
numerically calculated prefactor for adhesion–aspect ratio relation
in Eq. (5) as a function of Poisson’s ratio, together with various ana-
lytical solutions. Solution III in Eq. (37) upholds its exceptional per-
formance, demonstrating an error of merely 0.7%. By contrast,
alternative solutions found in Refs. [15,16,23,25] exhibit errors of
at least 6%. Given the prefactors ζ and ϕ, we can investigate the
critical blow-up pressure in pressure-controlled blister tests,
where a Poisson’s ratio dependent prefactor φ emerges as φ =
ϕ3/ζ4 (refer to Eq. (6)). In Fig. 7, we have compared various solu-
tions against numerical results concerning φ. In particular, our three
sets of solutions exhibit an error of less than 0.5%, while alterna-
tive solutions in the literature indicate errors exceeding 2%
[12,14–16,23,25]. Note that the solutions provided in Refs.
[12,14] are accurate specifically for ν = 0.5.
The blister test solution has garnered significant attention within

the literature [22,36]. Apart from the discussions on relations (5)

and (6), there have been analytical solutions addressing λ(ν) =
Gc/(pchc) in prior studies. By employing Eqs. (3) and (5), we can
easily obtain λ = ϕ/ζ. Further, using solution III (since it has con-
sistent accuracy), we obtain

λ =
5
8
+
15
56

ε −
15
56

ε2 + O ε3
( )

where ε(ν) has been provided in Eq. (38). This has slightly
improved accuracy over previous solutions such as λ ≡ 0.65 in
[12], λ ≈ 0.651 only for ν = 1/3 in [14], and λ ≡ 5/8 in [23] as
well as other erroneous solutions such as λ ≡ 1/4 in [37] and λ =
0.45 for ν = 0.5 in [38] (due to incorrect energy terms as noted in
Ref. [29]).

5 Concluding Remarks
The analysis given here has focused on improved analytical solu-

tions for the classic problem of pressurized membranes with
clamped or adhesive boundary conditions. Three variations of per-
turbed spherical cap shapes have been tested. We have shown that
solution III, based on Eq. (32), exhibited the most significant
improvements compared to the other two solutions in terms of
strain fields, pressure–deflection relationship, and energy release
rate. Remarkably, despite its simplicity, solution III demonstrates
unexpected accuracy, rivaling implicit solutions derived through
series-based approaches. The idea is similar to our recent perturba-
tion solution to the shaft-loaded elastic membranes [39]. We expect
the concept can be extended to address more intricate pressurized/
shaft-loaded membrane problems, for instance, by considering
additional, practical factors such as residual stresses, nonlinear
material behaviors, and the radial component of pressure.
It is important to note that the solutions presented herein are

limited to very bendable membranes with moderate rotation (i.e.,
h2/a2 ≪ 1 and h ≫ t). While they may find immediate application
in ultrathin elastic films such as 2D materials shown in Fig. 1, this
analysis overlooks several crucial physical factors pertinent to more
generalized thin films. Specifically, the nonlinear elastic response
proposed by Eq. (3) tends to linearize under small pressure loads,
once accounting for the film’s bending rigidity or residual stress
[40]. Consequently, the conditions for delamination would exhibit
qualitative variations (for an elaborate discussion, refer to
[41,42]). Furthermore, the adhesion energy (i.e., the critical strain
energy release rate) may vary depending on the specific mode
mixity [22,43]. One may anticipate that the influence of bending

Fig. 5 The prefactor ζ for the cubic pressure–deflection relation
as a function of Poisson’s ratio. Included are solutions by Jensen
[14] (deviation details not published), Dai et al. [16] (assuming a
spherical cap shape), Williams [23] (assuming a constant
stress), Freund and Suresh [2] (two solutions provided, both
assuming a spherical cap shape), Yue et al. [15] (assuming a
spherical cap), Blundo et al. [25] (assuming α ≈ 2.2 in Eq. (21)),
and Hencky [7] (the errors in original form is corrected by
Fichter [13]). Solutions I, II, and III are given in Eqs. (21), (29),
and (36), respectively.

Fig. 6 The prefactor ϕ for adhesion–aspect ratio relation in Eq.
(5) as a function of Poisson’s ratio. Explicit solutions for this pre-
factor available in the literature including Refs. [15,16,23,25] are
compared to numerical results as well as our solutions I, II, and
III expressed in Eqs. (24), (30), and (24), respectively.

Fig. 7 The prefactor φ in the critical energy release relation in
Eq. (6) as a function of Poisson’s ratio. The prefactor for ν= 0.5
has been provided by exploiting Hencky’s series solution in
Refs. [12,14]. Analytical expression for the dependency of φ on
Poisson’s ratio is given by φ= ϕ3/ζ4, where the dependency of
ϕ and ζ on Poisson’s ratio has been discussed in Refs.
[15,16,25] as well as in our solutions I, II, and III.
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rigidity and residual stress on elastic response diminishes as the
pressure increases substantially. However, caution is warranted,
as fully nonlinear kinematics and material laws may manifest,
eluding description by simplistic Föppl membrane theory [31].
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