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a b s t r a c t 

Microscale tents, formed when transferring two-dimensional (2D) materials over nanopar- 

ticles or nanopillars, or when indenting a suspended 2D material drumhead with an 

atomic force microscope (AFM) tip, emerge to be a useful structure for the strain engi- 

neering of 2D materials. In the periphery of the tents, where the 2D materials are sup- 

ported by the substrate, radial buckle delamination can often be observed, yet the forma- 

tion mechanism and the profile characteristics remain unclear. Here, we suggest that the 

tent-induced buckles result from the 2D material-substrate interface sliding radially in- 

ward, and their profiles and extent are controlled by the interface adhesion and friction. 

We experimentally characterized that the crest curvature of the buckles is proportional to 

a characteristic length that compares the elastic bending energy of the 2D material with 

its adhesion energy to the substrate. We then obtain theoretical predictions for the ex- 

tent of those buckles by exact closed-form solutions to Föppl–von Kármán (FvK) equations 

under both near-threshold and far-from-threshold conditions. Our results are highly ana- 

lytical, provide a direct means to estimate the interfacial shear and adhesive properties of 

the 2D material-substrate system based on simple topological characterizations of buckles. 

Our theoretical understandings also establish a fundamental base for the rational design of 

2D material tents. 

© 2020 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

1. Introduction 

Two-dimensional (2D) materials are a relatively new class of atomically thin materials with emerging mechanical and

electronic properties that lend well to next-generation nanoelectronics and nanophotonics ( Geim and Grigorieva, 2013 ; Neto

et al., 2009 ). Applications in this context typically involve transferring 2D materials to a supporting substrate. When 2D

materials are transferred over nanoparticles on the substrate, nanotents are formed. Initially, these tents were viewed as

disruptions for device applications ( Akinwande et al., 2014 ; Pizzocchero et al., 2016 ). However, recent works discovered con-

siderable mechanical strain within the tent, which is useful for many exciting electromechanical applications of 2D materials

( Chaste et al., 2018 ; Dai et al., 2018 ; Dai et al., 2019a ; Feng et al., 2012 ; Klimov et al., 2012 ; Tomori et al., 2011 ). As a result,

microscale tents were designedly created by transferring 2D materials to substrates pre-patterned with nanopillars ( Fig. 1 a)
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Fig. 1. (a) A schematic of transferring graphene over a pillared substrate. (b) A schematic of radial buckles (blue arrows) surrounding a graphene tent 

formed over a Au pillar (red arrow). (c) Scanning electron microscope (SEM) image of monolayer graphene covering a periodic array of nanopillars. Each 

nanopillar has a height of about 260 nm and an apex radius of 20 nm − 50 nm. The pillar pitch is 1.4 μm. Source: Figures adapted from (a and b) 

( Jiang et al., 2017 ) and (c) ( Reserbat-Plantey et al., 2014 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( Branny et al., 2017 ; Jiang et al., 2017 ; Li et al., 2015 ). For example, 2D semiconductors draping over an array of nanopillars

were demonstrated with the possibility to become large-scale quantum emitters, except that sometimes the pillars pierce

through the 2D materials without mechanically guided design ( Branny et al., 2017 ; Palacios-Berraquero et al. 2017 ). More-

over, the nanoindentation of 2D material drumheads also represents a common type of inverse 2D material tents ( Cao and

Gao, 2019 ; Lee et al., 2008 ). Both types of tents have been approximately modeled as circular membranes subjected to a

point load at the center and clamped at the edge ( Dai et al., 2019b ; Komaragiri et al., 2005 ; Lee et al., 2008 ; Vella and

Davidovitch, 2017 ). Such modeling, together with experiments on these 2D materials tents of different origins, has facili-

tated many vital metrologies for 2D materials, such as in-plane stiffness, mechanical strength, and adhesion energies to the

substrate. 

So far, both experimental and theoretical studies of 2D material tents assume that the 2D material perfectly conforms to

the substrate outside the tent. However, radial buckle delamination has been widely observable in the substrate-supported

zone ( Fig. 1 ) ( Jiang et al., 2017 ; Reserbat-Plantey et al., 2014 ; Zhang and Arroyo, 2016 ), which is prohibited under such

assumption. Since the buckles can reflect 2D material-substrate interfacial interactions and affect device design, it is crucial

to achieve a comprehensive mechanistic understanding for them. In this paper, we characterize radial buckles that form at

the periphery of multilayer graphene and monolayer MoS 2 tents. Using atomic force microscopy (AFM), we find that the

buckle profiles along the hoop direction follow a simple cosine function, and the wavelength and height of the buckles are

proportional to a characteristic length. We attribute the radial buckles to the interface sliding between the 2D material and
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its substrate. A simplified 1D analysis, along with the Lamé problem, can quantitatively explain the decay of the wavelength

and the height of the buckle profile with the increasing radial position. Finally, we present theory built upon the membrane

limit of Föppl–von Kármán (FvK) equations and account for the interfacial sliding in the periphery of the 2D material tents.

These results show important implications for the adhesion and friction metrology of 2D materials as well as for the rational

design of 2D material tents. 

2. Experimental methods 

To obtain accurate profiles of the radial buckles, we experimentally produced graphene and MoS 2 tents as graphene and

MoS 2 are two of the most prevalent 2D materials studied in recent years. We prepared graphene samples by exfoliating

SPI-1 grade highly ordered pyrolytic graphite (HOPG) on SiO 2 . Blue polyethylene cleanroom tape (CRT) was used to peel

large and thick flakes off the bulk crystal. The exfoliated flakes were brought into contact with another piece of the CRT

and exfoliated three more times. The flakes were then stored for a minimum of three hours in ambient conditions to allow

ambient moisture and other contents to adsorb on the surface of the exposed flakes. The SiO 2 chip was exposed to O 2

plasma using a Nordson MARCH Plasma CS170IF Etching System for two minutes at 150 W to remove any organic residue.

Immediately after O 2 plasma exposure, the exfoliated HOPG flakes on CRT were placed onto the surface of the SiO 2 chip.

Then the SiO 2 chip was placed on a hot plate and was heated at 100 °C for two minutes. The sample was removed from

the hot plate and cooled to room temperature, after which the CRT was removed. AFM step height measurement suggested

that the multilayer graphene sample contained 10-20 layers, as this method is known to be inaccurate for determining 2D

material thickness ( Brennan et al., 2015 ). 

We prepared monolayer MoS 2 by chemical vapor deposition (CVD) on SiO 2 from solid precursors ( Brennan et al., 2017 ).

A polydimethylsiloxane (PDMS) stamp and a water bath were used to separate the MoS 2 from the growth substrate. The

PDMS/MoS 2 was then placed on the receiving substrate, Al 2 O 3 /Si, and heated with a hot plate to 50 °C. Slowly peeling away

the PDMS transferred the MoS 2 to the substrate. 

We found that tents spontaneously formed when HOPG was mechanically exfoliated onto SiO 2 (left panel in Fig. 2 a),

and when CVD-grown monolayer MoS 2 was transferred to Al 2 O 3 (right panel in Fig. 2 a). Similar tents were also observed

in many 2D material devices in the literature ( Budrikis et al., 2015 ; Jiang et al., 2017 ; Reserbat-Plantey et al., 2014 ). The

formation of tents is typically attributed to nanostructures or nanoparticles confined at the interface. In this work, we focus

on the radial buckles that commonly formed at the periphery of the 2D material tents ( Fig. 2 a), which have been overlooked

in previous experimental characterizations and theoretical analysis. We note that the substrates used here are relatively stiff

as Young’s moduli of silicon dioxide (supporting the multilayer graphene) and aluminum oxide (supporting the monolayer

MoS 2 ) are around 70 GPa and 300 GPa, respectively. 

3. Experiments 

3.1. The shape of radial buckles 

Using tapping mode AFM, we obtained the height images of a multilayer graphene tent and a monolayer MoS 2 tent as

well as the radial buckles surrounding them ( Fig. 2 a). From these images, we extracted the height profile of a buckle by

scanning transversely to the buckle (i.e. along the circumferential direction). Though depending on the radial position, i.e.,

the distance to the center of the tent r , all buckle profiles in the hoop direction could be well approximated by a cosine

function ( Fig. 2 b), 

y ( x ) = 

δ

2 

(
1 + cos 

2 πx 

λ

)
(1)

where λ and δ are the wavelength and height of the buckle, respectively. In fact, a column undergoing Euler buckling would

deflect into a shape also characterized by Eq. (1) ( Timoshenko and Gere, 2009 ). It has been well studied that the profile of

a buckle could be modified by the deformation of a soft substrate at the edge of the buckle ( Audoly and Boudaoud, 2008 ;

Boijoux et al., 2018 ; Parry et al., 2005 ). The substrates (silicon dioxide and aluminum oxide) used here, however, are rela-

tively stiff in comparison with the bending stiffness of the 2D material flakes, and hence render the good approximation of

Eq. (1) . 

Using Eq. (1) to fit the measured buckle profiles can readily yield λ and δ ( Vella et al., 2009 ). We find that both λ and δ
decay over r , and finally disappear at a finite distance from the center of the tent, reminiscent of the finite wrinkling zone

of a water-supported elastic membrane ( Huang et al., 2007 ; Vella et al., 2010 ). Fig. 2 c plots experimentally measured buckle

wavelength as a function of the buckle height. The power-law fitting reveals that λ is proportional to 
√ 

δ, with a different

prefactor for the multilayer graphene and the monolayer MoS 2 . Physically, λ2 / δ represents the radius of curvature of the

buckle’s crest in the hoop direction ( Aoyanagi et al., 2010 ; Zhang and Yin, 2018 ). Constant λ2 / δ implies that the profiles of

buckles measured at different locations are self-similar as long as they are associated with the same tent. This observation

suggests that each transverse scan of the buckles may be considered as an isolated one-dimensional (1D) buckle. 
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Fig. 2. (a) AFM images of a multilayer graphene tent and a monolayer MoS 2 tent. The vertical scales indicate the height of the tents. Radial buckles can be 

found at the substrate-supported regime outside the tent, and their profiles can be obtained by taking scans transverse to the buckles in the AFM height 

image. (b) Normalizing these AFM scans gives the characteristic buckle profile, which is well fitted by the cosine function given by Eq. (1) (black curve). 

This fit can yield the buckle wavelength λ and height δ. Different colors of the markers represent scans at different radial locations in the MoS 2 tent 

while these profiles are normalized by their fitted wavelength and height. (c) The wavelength ( λ) of the multilayer graphene and monolayer MoS 2 buckles 

as a function of their height ( δ) in a log-log plot. Colored markers are used to differentiate different buckles surrounding the same tent. The black lines 

correspond to a power-law fit with an exponent of ½. 

 

 

 

3.2. 1D analysis 

We recall the case of 1D buckling, where an elastic membrane buckles when subject to a uniaxial, end-to-end compres-

sive displacement � ( Fig. 3 a). We limit ourselves to the inextensional analysis and neglect any compression of the relatively

stiff thin membrane ( Vella et al., 2009 ). The elastic energy of the system, therefore, comes from the bending of the 2D

material 

U = 

1 

2 

B 

∫ λ/ 2 

−λ/ 2 

y ′′ ( x ) 2 dx = 

π4 Bδ2 

λ3 
, (2) 
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Fig. 3. (a) A schematic of a 1D buckle where � represents the compressive displacement. (b) Schematic illustration of radial buckles at the periphery 

of a tent. r represents the radial position. κθ and κ r denote the buckle crest curvature in the hoop and radial direction, respectively. � represents the 

compressive displacement in the hoop direction which varies with r . (c) Experimentally measured δ2 / λ, λ2 / δ, λ, δ of the buckles formed by the monolayer 

MoS 2 tent as a function of the radial position. Solid lines are based on the scaling law given in Eq. (7) , and the dashed lines represent the best fitting. 

 

 

 

 

 

 

where B is the bending stiffness of the membrane and y ′′ ( x ) is the second derivative with respect to x of the tent profile

given in Eq. (1) , i.e. the curvature. The inextension of the membrane dictates the following geometrical relationship 

� = 

∫ λ/ 2 

−λ/ 2 

√ 

1 + y ′ ( x ) 2 dx − λ = 

π4 δ2 

4 λ
, (3)

which may be used to eliminate δ from Eq. (2) in favor of �. Through −∂ U/∂ λ = �γ , we obtain the following energy

release rate 

�γ = 2 π4 B δ2 

λ4 
. (4)

This result is identical to the previously reported macro/microscopic 1D buckles ( Deng et al., 2017 ). However, we should

be careful with the change of interfacial energy. When the delaminated interface is filled with gas, �γ is simply the adhe-
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sion energy between the membrane and the substrate 

�γgas = 
. (5) 

However, recent works showed strong evidences that the 2D material-substrate interface can spontaneously confine hy-

drocarbons and liquid water ( Haigh et al., 2012 ; Khestanova et al., 2016 ; Sanchez et al., 2018 ). When the delaminated in-

terface is filled with liquid content, the formation of a buckle involves the interfaces between the liquid, the membrane,

and the substrate. In this case, the change of the interfacial energy should be written as �γ = γml + γsl − γms , where

γ ml , γ sl , and γ ms are the energy densities (per unit area) for the membrane-liquid interface, substrate-liquid interface, and

membrane-substrate interface, respectively. We can further use Young–Dupré equations to derive 

�γliquid = 
 − γl ( cos θs + cos θm 

) , (6) 

where γ l is the surface tension of the liquid, and θ s and θm 

are the liquid contact angles of the substrate and the membrane,

respectively ( Israelachvili, 2011 ). If given the surface tension of the confined liquid and its contact angle to the 2D material

and the substrate, with �γ estimated by Eq. (4) , one may extract the interface adhesion for the 2D material-substrate

interface, a key interface parameter for 2D material-based devices ( Koenig et al., 2011 ). It is worth mentioning that special

attention should be given to the bending stiffness of 2D materials since the classical bending stiffness-Young’s modulus

relation for a plate breaks down when bending monolayer or multilayer 2D materials ( Lu et al., 2009 ; Zhang et al., 2011 ;

Wang et al., 2019 ). 

The 1D analysis gives a characteristic length scale λ2 /δ ∼
√ 

B/ �γ , which compares surface tension and/or adhesion with

bending stiffness and has been referred to as the elasto-capillary length ( Py et al., 2007 ; Schroll et al., 2013 ; Vella et al.,

2009 ). Such scaling can explain our experimental observation of constant λ2 / δ in Fig. 2 c although these radial buckles,

unlike the 1D buckles, involve bending energy from two principal curvatures, i.e., both radial and circumferential. However,

if the curvature of the crest line ( κ r ) is much smaller than the hoop curvature of the buckle ( κθ ) as illustrated in Fig. 3 b,

the bending energy of the radial buckle can reasonably reduce to the 1D estimate. Experimentally, we found that κ r decays

over r and the maximum κ r is found near the edge of the tent (~ 0.1 μm 

−1 for monolayer MoS 2 tent) while the maximum

κθ is at the buckle crest appearing to be a r -independent constant (~ 2 μm 

−1 ). Indeed, κ r � κθ . 

3.3. The formation mechanism of radial buckles 

Having analyzed the hoop-direction profile characteristics of the 2D material radial buckles, we move on with the inves-

tigation of how these characteristic parameters vary with the radial position r . In Fig. 3 c, we plot the measured λ, δ, λ2 / δ,

δ2 / λ of the MoS 2 buckles shown in Fig. 2 a vs. r . Here, our primary interest is in the size of the buckled region, which might

be equivalent to the region in which there is a hoop compression ( Vella et al., 2010 ). If we assume that the 2D material-

substrate interface is frictionless, the 2D material inside the tent pulls the 2D material outside the tent inward, and hence

the hoop stress is negative, leading to the buckle delamination of the atomically thin membrane, i.e. the 2D material. If

we estimate the size of the buckled zone by the size of the compression zone, the analysis of �~r relation then becomes a

classical problem of linear elasticity – the Lamé problem ( Davidovitch et al., 2011 ; Sadd, 2009 ). We can, therefore, obtain the

stress and displacement field of the planar, axisymmetric state and reach the conclusion that both stress and strain ∼ r −2 

and � ∼ r −1 if we apply a traction-free boundary condition at infinity ( Davidovitch et al., 2011 ; Sadd, 2009 ). Combining

with the characteristic length scale yields the following scaling predictions: 

� = 

π4 δ2 

4 λ
∼ r −1 , 

λ2 

δ
∼

√ 

B 

�γ
∼ r 0 , δ ∼ r −2 / 3 , λ ∼ r −1 / 3 . (7) 

We plot these scaling relations in Fig. 3 c and find reasonable agreement with experimental results. We thus suggest that

the formation of the 2D material buckles around a tent is a result of interface sliding and their profiles are governed by the

competition between the bending energy and the interface energies. 

However, the frictionless assumption indicates that the entire substrate-supported part of the membrane undergoes the

hoop compression and thus over-predicts the extent of the buckled region compared with that observed experimentally.

Specifically, the best fittings in Fig. 3 c (dashed lines) yield a much faster decay of � than r −1 ( r −2 . 3 ±0 . 2 in fact), of δ than

r −2 / 3 ( r −1 . 5 ±0 . 1 ), as well as a slightly faster decay of λ than r −1 / 3 ( r −0 . 7 ±0 . 1 ). This motivates the following analysis accounting

for above-overlooked factors such as interfacial shear traction, pretension, and the finite size of the nanopillar and the mem-

brane, all of which may affect the size/extent of the zone subjected to hoop compression (we then call it the compression

zone). Since these factors are possible to be controlled in experiments, knowing their effects may guide the rational design

of 2D material tents with or without peripheral instabilities. Another important reason for the deviation between Lamé pre-

dictions and the observation in Fig. 3 is that a highly bendable sheet cannot sustain compressive stresses and instabilities

occur and release the hoop compression ( Box et al., 2019 ; Davidovitch and Vella, 2018 ). It is thus necessary to perform an

analysis to consider that the negative stresses are relaxed in the membrane (frequently referred to as tension field theory

or far-from threshold analysis) ( Davidovitch et al., 2011 ; Vella, 2019 ). Note that such relaxation may not be complete for

relatively thick 2D material membranes because of the stiff, adhesive substrate. We will demonstrate an example of this

case in Section 8 . 
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Fig. 4. Notations for the analysis of an axisymmetric tent where a finite zone in the substrate-supported regime ( R < r < R c ) undergoes hoop compression 

caused by interface sliding. R is the edge of the tent, R c is the edge of the compression/buckled zone, and R out is the outer radius of consideration. τ is the 

membrane-substrate interface shear traction and t pre is the pretension in the membrane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Therefore, in the following sections, we first consider a limiting case in Section 4 assuming that the hoop compressive

stress is maintained (instabilities are suppressed) such that we can adopt near-threshold (NT) modeling with the consider-

ation of interfacial shear traction, pretension, and the finite size of pillar and membrane. Parametric studies based on NT

modeling are performed in Section 5 . For thin sheets, a more representative case arises from that the hoop compressive

stress is fully relaxed. We describe this case through far-from-threshold (FFT) modeling in Section 6 . The analysis of FFT

modeling and its comparison with NT modeling are discussed in Section 7 . The NT and FFT modeling would provide up-

per/lower limits for the tent system in general, and we will leverage them to interpret our experimental observations in

Section 8 . 

4. Near-threshold modeling 

4.1. General theory 

We first present a theoretical framework for considering the finite interfacial shear traction between the 2D material and

its substrate. We will show that other factors (i.e., pretension, and the finite size of the nanopillar and the membrane) come

into play through boundary conditions. A theoretical idealization of an axisymmetric tent formed by 2D materials is shown

in Fig. 4 . Inside the tent ( r < R ), the vertical displacement w ( r ) caused by a point load F is related to the Airy stress function

φ( r ) by Föppl–von Kármán (FvK) equations ( Mansfield, 2005 ; Vella and Davidovitch, 2017 ), 

∇ 

2 
(
B ∇ 

2 w 

)
− [ φ, w ] − F 

2 π

δ( r ) 

r 
= 0 (8)

and 

∇ 

4 φ + 

1 

2 

E 2D [ w, w ] = 0 , (9)

where E 2D is the in-plane stiffness of the membrane, δ( r ) is the Dirac delta function, the operators [ f, g ] = ( f ,rr g ,r + f ,r g ,rr ) /r,

∇ 

2 f = f ,rr + f ,r /r, ∇ 

4 = ∇ 

2 ∇ 

2 , and () , r denotes differentiation with respect to r . The radial and circumferential stress resul-

tants can take the form 

N rr = φ,r /r and N θθ = φ,rr . (10)

For the membrane outside the tent ( R < r < R c ), we assume w = 0 , i.e. no buckling and hence compressive stress not

relaxed. R c is the outer radius of the compression zone. Considering the thinness of 2D materials, we can treat the interface

shear traction, τ , as a body force and assume that it is derivable from an in-plane potential function v such that ( Sadd, 2009 )

v ,r + τ = 0 . (11)

This assumption is not very restrictive because many models about interfacial interactions between the 2D material and

its substrate followed this approach ( Zhang and Tadmor, 2018 ). The equilibrium can be automatically satisfied by taking

stress resultants as 

N rr = φ,r /r + v and N θθ = φ,rr + v . (12)

In the NT analysis, the strain compatibility holds and provides the governing equation 

4 2 
∇ φ + ( 1 − ν) ∇ v = 0 . (13) 
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4.2. Non-dimensionalization 

Eqs. (8)–(13) complete the governing equations for the tent problem accounting for finite interface shear, which are to

be solved along with boundary conditions. Before proceeding, we note that the first term in Eq. (8) , representing bending,

can be neglected due to the thinness of 2D materials. The tent radius R and the membrane stiffness E 2D are experimentally

accessible, and sometimes (e.g. in nanoindentation tests) the radius is prescribed by a hole patterned on the substrate. We

then use these two quantities to non-dimensionlize the variables as follows 

ρ = 

r 

R 

, ρc = 

R c 

R 

, W = 

w 

R 

, F = 

F 

E 2D R 

, � = 

φ

E 2D R 

2 
, T = 

τR 

E 2D 

, V = 

v 
E 2D 

. (14) 

Now, inside the tent ( ρ ≤ 1), we integrate Eqs. (8) and (9) once and find that ( Chopin et al., 2008 ) 

�′ W 

′ + 

F̄ 

2 π
= 0 (15) 

and 

ρ
d 

d ρ

[
1 

ρ

d 

d ρ

(
ρ�′ )] + 

1 

2 

W 

′ 2 = 0 , (16) 

where () ′ denotes differentiation with respect to ρ . Outside the tent (1 ≤ ρ ≤ ρc ), Eqs. (11) and (13) become 

V 

′ + T = 0 (17) 

and 

d 

d ρ

[
1 

ρ

d 

d ρ

(
ρ�′ )] + ( 1 − ν) V 

′ = 0 . (18) 

The four boundary value problems, i.e. �′ ( ρ) and W ( ρ) when ρ ≤ 1, and �′ ( ρ) and V ( ρ) when ρ ≥ 1, can be solved

according to boundary conditions. In this work, we present closed-form analytical solutions to them, by which several useful

composite parameters emerge naturally and relate to experiments directly. 

4.3. Analytical results: outside the tent 

There has been a surge of interest in the sliding between 2D materials and their substrates in recent years ( Xu and

Zheng, 2018 ). Micro-scale Raman characterizations indicated nonlinear shear responses of the 2D material-substrate interface

( Dai et al., 2016 ; Guo and Zhu, 2015 ; Jiang et al., 2013 ; Wang et al., 2016 ; Wang et al., 2017b ). Moreover, many subtle

features of the interface shear/friction appeared when measurement resolutions downsized to the atomic level ( Kitt et al.,

2013 ; Wang et al., 2017c ). For example, the frictional resistance is found to be particularly sensitive to chemical bonding,

substrate roughness, and the local lattice state of the interface. So-call superlubricity (a nearly frictionless state) can be

achieved between incommensurately stacked 2D materials ( Liu et al., 2012 ). Here, we take the first-order approximation

and assume a constant interface shear traction within the sliding zone (i.e. the compression zone), like the perfect plasticity

behaviors ( Gong et al., 2010 ; Kitt et al., 2013 ; Wang et al., 2017a ). With this simplification, Eq. (17) can be integrated once

such that 

V = −T ρ + A. (19) 

Eq. (18) can then be solved directly 

�′ ( ρ) = Bρ + 

C 

ρ
+ 

1 − ν

3 

T ρ2 . (20) 

At the outer edge of the circumferentially compressed zone ( ρ = ρc ) , both radial and circumferential stress resultants

decay to zero, i.e. �′ ( ρc ) / ρc + V = �′′ ( ρc ) + V = 0 , leading to 

A + B = 

1 + ν

2 

T ρc and C = 

1 − ν

6 

T ρ3 
c . (21) 

4.4. Analytical results: inside the tent 

Nonlinear FvK equations for thin membranes are difficult to solve, but analytical progress has been recently made for

axisymmetric cases ( Jin et al., 2017 ; Vella and Davidovitch, 2017 ; Vella and Davidovitch, 2018 ). Here, we adopted the strategy

proposed by Chopin et al. (2008 ) and Vella and Davidovitch (2017) . Using Eq. (15) can eliminate W 

′ in Eq. (16) , 

ρ
d 

d ρ

[
1 

ρ

d 

d ρ

(
ρ�′ )] + 

1 

2 

(
F̄ 

2 π�′ 

)2 

= 0 . (22) 
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It is convenient to introduce ( Bhatia and Nachbar, 1968 ) 

ψ ( η) = ρ�′ ( ρ) , η = ρ2 , (23)

such that Eq. (22) can be simplified as 

d 

2 ψ 

d η2 
= − F̄ 2 

32 π2 ψ 

2 
. (24)

We integrate once to obtain 

d ψ 

d η
= 

F̄ 

4 π

√ 

( αψ + 1 ) /ψ , (25)

where α is a negative constant to be determined based on boundary conditions. Using ˜ ψ = −αψ , Eq. (25) becomes 

d 

˜ ψ 

d η
= 

F 
√ 

( −α) 
3 

4 π

√ (
1 − ˜ ψ 

)
/ ˜ ψ . (26)

Further integrating analytically ( Chopin et al., 2008 ), we have 

F 
√ 

( −α) 
3 

4 π
η = −

√ 

˜ ψ 

(
1 − ˜ ψ 

)
+ tan 

−1 

√ 

˜ ψ / 
(
1 − ˜ ψ 

)
, (27)

where we used the zero radial displacement condition at the center of the tent, i.e. lim ρ→ 0 ρ[ φ′′ (ρ) − νφ′ (ρ) ] = 0 or es-

sentially 

˜ ψ ( 0 ) = 0 . (28)

At the edge of the tent ( η = 1 ) , a useful parameter ˜ ψ 1 = 

˜ ψ (1) can be defined that satisfies 

F̄ 
√ 

(−α) 
3 

4 π
= −

√ 

˜ ψ 1 

(
1 − ˜ ψ 1 

)
+ tan 

−1 

√ 

˜ ψ 1 / 
(
1 − ˜ ψ 1 

)
. (29)

Invoking the continuity condition of radial stress and displacement, we have 

�′ (1 

−)
= �′ (1 

+ ) + V 

(
1 

+ ) and �′′ (1 

−)
− ν�′ (1 

−)
= �′′ (1 

+ ) − ν�′ (1 

+ ) + ( 1 − ν) V 

(
1 

+ ), (30)

which further lead to 

˜ ψ 1 = −αT 

(
1 + ν

2 

ρc + 

1 − ν

6 

ρ3 
c −

2 + ν

3 

)
(31)

and 

d 

˜ ψ 

d η
| η=1 = −αT 

1 + ν

2 

( ρc − 1 ) . (32)

Ostensibly, the boundary value problem in Eq. (24) is a 2nd order system with three boundary conditions, i.e., Eqs. (28) ,

(31) , and (32) . However, the size of the compression zone, ρc , is unknown. In fact, Eq. (32) can be used to give an equation

for the integration constant α in Eq. (26) 

−αT 
1 + ν

2 

( ρc − 1 ) = 

F̄ ( −α) 
3 / 2 

4 π

√ 

1 − ˜ ψ 1 

˜ ψ 1 

. (33)

Further, combining Eqs. (29) and (33) can eliminate F̄ and relate the α to ˜ ψ 1 , T , and ρc by 

α = 

2 

[ 
1 − ˜ ψ 1 −

√ (
1 − ˜ ψ 1 

)
/ ˜ ψ 1 tan 

−1 

√ 

˜ ψ 1 / 
(
1 − ˜ ψ 1 

)] 
( 1 + ν) T ( ρc − 1 ) 

. (34)

We then use Eq. (34) to eliminate the constant α in Eq. (31) , and finally, find 

˜ ψ 1 as a function of ρc 

3 ( 1 + ν) ( ρc − 1 ) [
3 ( 1 + ν) ρc + ( 1 − ν) ρ3 

c − 2 ( 2 + ν) 
] = 1 − ˜ ψ 

−1 
1 + 

√ (
1 − ˜ ψ 1 

)
/ ˜ ψ 

3 
1 

tan 

−1 

√ 

˜ ψ 1 / 
(
1 − ˜ ψ 1 

)
. (35)

It is found that ˜ ψ 1 → 1 represents the ultra-lubricated membrane-substrate interface as the size of the compression zone

ρc goes infinity. In general, for a given size of the compression zone ρc , we can figure out the required parameters ˜ ψ 1 by

Eq. (35) , α by Eq. (34) , and then the point force F̄ by Eq. (33) in terms of the interfacial shear traction T . 
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4.5. A composite parameter 

We aim to relate to the size of the compression zone ρc to the center height of the tent W 0 = W (0) because the latter

one is experimentally accessible. Note that from Eq. (15) , 

W 0 = 

∫ 1 

0 

F̄ dρ

2 π�′ = 

−F̄ α

4 π

∫ ˜ ψ 1 

0 

d ˜ ψ 

˜ ψ 

˜ ψ 

′ . (36) 

Combining Eq. (36) with Eq. (26) can analytically obtain 

W 0 = 

2 √ −α
tan 

−1 

√ 

˜ ψ 1 / 
(
1 − ˜ ψ 1 

)
. (37) 

Eqs. (34) , (35) , and (37) complete the analytical solutions to the problem where a circular membrane is poked with a

height of W 0 and is supported by an interface with a constant shear traction T . Particularly, Eqs. (34) and (37) can cancel

the constant α out and hence the size of the compressive/buckling zone ρc depends on a single composite parameter T /W 

2 
0 .

This suggests that reducing the interfacial shear resistance and increasing the tent height can extend the compression zone

outside the tent. 

5. Parametric studies based on near-threshold modeling 

Based on NT modeling, we now present how the size of the compression zone changes with the height of the tent and

other parameters of the system including the shear traction of the 2D material-substrate interface, pretension in the 2D

material, size of the 2D material, and the pillar radius. 

5.1. Interfacial shear traction 

We start with the distribution of the hoop compressive displacement in the substrate-supported region ( ρ ≥ 1) by con-

sidering the shortened perimeter of a material circle. Hooke’s law can relate the hoop strain to stress resultants by 

εθθ = 

N θθ − νN rr 

E 2D 

. (38) 

The stress resultants can be readily calculated through Eqs. (12) and (19)–(21) . We normalize the hoop compression by

the tent radius such that 

�̄ = −2 π r εθθ

R 

= 

π
(
1 − ν2 

)
3 

T ρ

(
−3 ρc + 

ρ3 
c 

ρ2 
+ 2 ρ

)
. (39) 

In Fig. 5 a, we plot �̄ as a function of ρ for tents subject to different center heights and various interfacial tractions.

Evidently, when T → 0, the limit of �̄(ρ) ∼ ρ−1 can be observed, which is consistent with what was predicted under

the assumption of the frictionless interface in Section 3.3 . The maximum compressive displacement is thus located at the

edge of the tent, i.e. �̄1 = �̄(1) . However, with finite interfacial shear traction, the compression zone outside the tent is

confined within a finite region (1 ≤ ρ ≤ ρc ). As a result, the hoop compressive displacement decays faster than ρ−1 when

approaching ρc , especially for tents with small center heights. The detailed size of the compression zone versus center

height for various interfacial tractions is further plotted in Fig. 5 b. As expected, large center deflection and weak shear

traction at the membrane-substrate interface can facilitate the propagation of the compression zone in the supported region.

Notably, both �̄1 /W 

2 
0 

and ρc depend on a composite parameter T /W 

2 
0 

monotonically and the corresponding master curves 

are shown in Fig. 5 c and d. We may point out that this composite parameter compares the shear traction at the interface

with the stretching forces in the membrane since the latter one scales as W 

2 
0 

inside the tent. 

5.2. Pretension 

We consider the pretension ( T pre = t pre / E 2D , Fig. 4 ) in 2D materials that may be introduced when transferring them to

target substrates ( Brennan et al., 2015 ). For simplicity, we focus on a limiting case – frictionless interface – such that the

general solution for the Airy stress function outside the tent (also known to Lamé) takes a simple form 

�′ = aρ + b/ρ. (40) 

In addition, we expect a = T pre since the stress resultants approach the applied pretension as ρ → ∞ . The constant b

can be determined analytically in terms of the applied pretension T pre and the center height of the tent W 0 based on the

continuity conditions at the edge of the tent Appendix A ). With Eqs. (38)–(40) , we can derive circumferential compressive

displacement 

�̄ = 2 π( 1 + ν) b/ρ − 2 π( 1 − ν) T pre ρ. (41) 



Z. Dai, D.A. Sanchez and C.J. Brennan et al. / Journal of the Mechanics and Physics of Solids 137 (2020) 103843 11 

Fig. 5. (a) Hoop compressive displacement along the radial direction for various interfacial shear tractions. Solid curves denote tents with a center height 

W 0 = 0 . 2 while dashed curves denote W 0 = 0 . 02 . (b) The size of the compression zone versus the center height of the tent for various interfacial shear 

tractions. (c) The dependency on T /W 

2 
0 of the hoop compressive displacement at the edge of the tent. (d) The dependency on T /W 

2 
0 of the size of the 

compression zone. All quantities are normalized quantities in this figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 a shows the �̄ as a function of ρ for tents subject to different center heights and various values of pretension.

Analogous to the effect of T in Fig. 5 a, the distribution of compressive displacement approaches �̄ ∼ ρ−1 as T pre → 0. Also,

the finite pretension makes the decay of �̄ faster than ρ−1 , especially for tents with small center deflections since the size

of the compression zone outside the tent becomes finite. These results are similar to the finite wrinkling zone of a thin

polymeric film floating on the water surface while undergoing a point force at the center and surface tension at the edge of

the film ( Vella et al., 2015 ). 

We find that when pretension exists, a critical center deflection is required for the onset of the compression zone outside

the tent. For example, in the cases of T pre ≥ 10 −3 and W 0 = 0 . 03 in Fig. 6 a, the thin sheet is subject to tension everywhere

across its entire area and hence, circumferential compression is prohibited. This phenomenon can be further elucidated by

ρc ~ W 0 curves in Fig. 6 b where the outer radius of the compression zone is identified by 

�̄( ρc ) = 0 . (42)

Clearly, the critical center deflection ensuring ρc > 1 increases with increasing pretension in the membrane. Interestingly,

the normalized maximum compressive displacement ( ̄�1 /W 

2 
0 ) and the size of the compression zone ( ρc ) depend on a

composite parameter T pre /W 

2 
0 as shown in Fig. 6 c and d ( Appendix A ). As the center deflection of the tent causes a strain

scaling as ( w (0)/ R ) 2 or W 

2 
0 

, and associated stress scaling as E 2D W 

2 
0 

, the composite parameter, T pre /W 

2 
0 

, thus compares the

pre-stress with the stress associated with the out-of-plane deformation of the tent. Notably, buckling instabilities are likely

to occur only when T pre /W 

2 
0 

< ∼ 0 . 12 . When the interfacial shear traction is considered, we expect two governing parameters:

T pre /W 

2 
0 

and T /W 

2 
0 

. 

5.3. Finite size of 2D materials 

We now turn to the case that the compression zone engulfs the entire membrane since the size of the 2D materials

( ρout = R out /R , Fig. 4 ) is typically limited in experiments. Before the outer edge of the compression zone approaches the
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Fig. 6. (a) Hoop compressive displacement along the radial direction for different values of pretension. Solid curves denote tents with a center height 

W 0 = 0 . 3 while dashed curves denote W 0 = 0 . 03 . Note that for the cases of T pre = 10 −3 and 10 −2 , the tent of W 0 = 0 . 03 shows hoop tension across the entire 

membrane indeed. (b) The size of the compression zone versus the center height of the tent for different values of pretension. The dashed line shows that 

a critical center deflection is required for the onset of a compression zone outside the tent due to the existence of pretension. (c) The dependency on 

T pre /W 

2 
0 of the compressive displacement at the edge of the tent. (d) The dependency on T pre /W 

2 
0 of the size of the compression zone. All quantities are 

normalized quantities in this figure. 

 

 

 

 

 

 

 

 

 

 

 

edge of the 2D material flake ( ρc ≤ ρout ), our analysis in Section 5.1 . should still hold. However, when ρc ≡ ρout , we neglect

the pretension for simplicity such that the edge of the membrane becomes traction-free, i.e., N rr ( ρout ) = 0 , or 

�′ ( ρout ) 

ρout 
+ V = 0 . (43) 

We then write circumferential compressive displacement regarding the interfacial shear traction and the size of the 2D

material 

� = 2 πT ρ

[
C 

T 

(
1 − ν

ρ2 
out 

+ 

1 + ν

ρ2 

)
− 1 − ν2 

3 

(
2 + ν

1 + ν
ρout − ρ

)]
, (44) 

where the constant C can be determined by the abundant continuity conditions at the edge of the tent ( Appendix B ). 

Fig. 7 a shows the evolution of �̄ with increasing tent height where solid curves represent membranes with ρout of 3

and dashed curves represent sufficiently large membranes ( ρout > ρc ). After ρc → 3, differences between the two types of

tents appear regarding the displacement fields. Specifically, further increasing the center height of the tent, dashed curves

approach �̄ ∼ ρ−1 from below (the same as the observations in Fig. 5 ), while solid curves show larger compressive dis-

placement and even overshoot the �̄ ∼ ρ−1 limit near the outer edge of the thin membrane. In addition, we found that

C / T is a function of the parameters T /W 

2 
0 and ρout ( Appendix B ), as is the normalized compressive displacement at the edge

of the tent �̄1 /W 

2 
0 

as shown in Fig. 7 . When the pretension is considered, we expect three governing parameters in this

system: T pre /W 

2 
0 , T /W 

2 
0 and ρout . 

5.4. Finite pillar radius 

Up to now, we have assumed a point force acting at the tent center. However, in many experimental setups, the radius of

the pillar ( ρ = R /R ) is finite, which may have a nontrivial effect on the size of the compression zone. When accounting
in in 
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Fig. 7. (a) Hoop compressive displacement along the radial direction for tents with various center heights. Solid curves denote tents with an outer radius 

ρout = 3 while dashed curves denote the case where the membrane size is sufficiently large. Note that when the center height is small (i.e. W 0 = 0 . 04 and 

0.06), the solid and dashed curves overlap because ρc ≤ ρout . (b) The dependency on T /W 

2 
0 of the normalized compressive displacement at the edge of the 

tent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for the finite radius of the circular plateau at the tip of the pillar, the differential equations inside the tent, i.e., Eqs. (15) and

(16) , are still applicable, while the integrating domain to derive them becomes [ ρ in , 1]. We may consider the following

“boundary” values at the edge of the pillar and tent, 

W ( ρin ) = W 0 , ˜ ψ 

(
ρ2 

in 

)
= 

˜ ψ in , 
˜ ψ ( 1 ) = 

˜ ψ 1 . (45)

˜ ψ 1 is constrained by the continuity conditions and then relates to the size of the compression zone by Eq. (30) . In

addition, we assume that the radial displacement is fixed at the edge of the pillar for simplicity that requires 

d 

˜ ψ 

d η
| η= ρ2 

in 
= 

1 + ν

2 

˜ ψ in 

ρ2 
in 

. (46)

We still pursue exact analytical solutions using the same technique as outlined in Section 4 (effects of the finite size

of the 2D material and pretension are neglected, see details in Appendix C ). This allows us to eliminate intermediate pa-

rameters and find out governing ones: the radius of the pillar and the combined parameter T /W 

2 
0 

. In Fig. 8 , we show the

dependency of the normalized compressive displacement at the edge of the tent �̄1 /W 

2 
0 and the size of the compression

zone ρc on ρ in and T /W 

2 
0 

. As ρ in → 0, we verify that these results recover those obtained by assuming a point force in

Fig. 5 . Furthermore, we find that the hoop compression at the edge of the tent increases significantly as the pillar radius

increases from 0.001 to 0.25, ( Fig. 8 a) while the size of the compression zone increases slightly ( Fig. 8 b). When the finite

size of the 2D material and pretension are considered, we expect four governing parameters: T pre /W 

2 
0 

, T /W 

2 
0 

, ρ in , and ρout . 

6. Far-from-threshold modeling 

Based on the NT analysis, we have derived four controlling parameters exactly: T /W 

2 
0 

, T pre /W 

2 
0 

, ρout , and ρ in . How-

ever, such analysis may approximate well only when the sheet is very thick and the substrate can largely constrain the

formation of the buckling (the ~15-layer graphene sample shown in Fig. 15 would be an example). FFT analysis comes

naturally from that buckle instabilities occur and relax the hoop compressive stress such that N θθ ≈ 0 or | N θθ | � N rr
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Fig. 8. Contour plots for the normalized compressive displacement at the edge of the tent �̄1 /W 

2 
0 (a) and the size of the compression zone ρc (b) as a 

function of two governing parameters: ρ in and T /W 

2 
0 . 

 

 

 

 

 

 

( Davidovitch et al., 2011 ; Vella and Davidovitch, 2018 ). This scenario would be particularly true for a highly bendable sheet

that is wrinkled in the suspended region and buckled in the substrate-supported region, for example, the monolayer MoS 2 
sample shown in Fig. 2 a right panel and Fig. 14 . As a result, a number of regions should be considered in general, including

a central suspended and unwrinkled region [0, ρw 

], a suspended and wrinkled region [ ρw 

, 1], a supported and buckled

region outside the tent [1, ρb ], and then an outmost unbuckled region [ ρb , ρc ]. In this case, the size of buckled zone can

be estimated by the size of the zero- N θθ region (denoted by ρb ). Note that the last region needs more thoughts when the

pretension applies or when the buckled zone propagates and engulfs the finite membrane. For simplicity, we neglect the
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Fig. 9. Schematic illustration of the difference between near-threshold (NT) and far-from-threshold (FFT) modeling of a thin sheet tent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

finite size effect of the sheet and the pretension (due to a number of uncertainties as discussed later in Section 8.2 .) for this

FFT analysis and focus on the main physics associated with the interfacial shear traction. 

We define ρ = ρw 

(i.e. r = ρw 

R ) as the boundary between the unwrinkled and wrinkled region in the suspended region

of a tent Fig. 9 ). When 0 ≤ ρ ≤ ρw 

, the regular FvK equations, i.e. Eqs. (15) and ( (16) , and their analytical solutions, still

apply. Particularly, at ρ = ρw 

, we can define a useful parameter ˜ ψ w 

= 

˜ ψ ( ρ2 
w 

) that satisfies 

F̄ 
√ 

(−α) 
3 

4 π
ρ2 

w 

= −
√ 

˜ ψ w 

(
1 − ˜ ψ w 

)
+ tan 

−1 

√ 

˜ ψ w 

/ 
(
1 − ˜ ψ w 

)
. (47)

At this boundary, we also let the hoop stress be zero ( Vella and Davidovitch, 2018 ) and, according to Eq. (26) , obtain 

F 
√ 

( −α) 
3 

2 π
ρ2 

w 

= 

√ 

˜ ψ 

3 
w (

1 − ˜ ψ w 

) . (48)

Interestingly, combining Eqs. (47) and (48) can eliminate F̄ , α, and ρw 

simultaneously, such that ˜ ψ w 

must satisfy the

transcendental equation √ 

˜ ψ 

3 
w 

/ 
(
1 − ˜ ψ w 

)
+ 2 

√ 

˜ ψ w 

(
1 − ˜ ψ w 

)
= 2 tan 

−1 

√ 

˜ ψ w 

/ 
(
1 − ˜ ψ w 

)
, (49)

whose nontrivial solution is ˜ ψ w 

∼= 

0 . 6965 . However, ρw 

is not known a priori , which prevents the solution to F̄ 
√ 

(−α) 3 . 

To deal with this unknown, we move on to the wrinkled region, ρw 

≤ ρ ≤ 1, within which the second FvK equation

concerning the compatibility is replaced by N θθ = 0 . This leads to a constant �′ , and a linear out-of-plane profile of the tent

according to the first FvK equation (within which F̄ = 0 ), 

�′ = −
˜ ψ w 

αρw 

and W = C w 

( 1 − ρ) , (50)

where we used the continuity of radial stress at ρ = ρw 

and the boundary condition W (1) = 0 . To ensure the continuity of

in-plane displacement ( u = R ̃  u ), we recall the kinematics within the wrinkled region to show that 

ερρ = 

d ̃  u 

dρ
+ 

1 

2 

(
dW 

dρ

)2 

or −
˜ ψ w 

αρw 

ρ
= 

d ̃  u 

dρ
+ 

1 

2 

C 2 w 

. (51)

Integrating Eq. (51) once, we have 

˜ u ( ρw 

) − ˜ u ( 1 ) = −
˜ ψ w 

αρw 

ln ρw 

+ 

1 

2 

C 2 w 

( 1 − ρw 

) . (52)

This means the in-plane displacement difference across the wrinkled region is enlarged by the in-plane stretch of the

sheet (since ρw 

≤ 1 and α < 0) while reduced by the out-of-plane rotation of the sheet. We can detail ˜ u ( ρw 

) by Hooke’s

law and stress states in the unwrinkled region at ρ = ρw 

, 

˜ u ( ρw 

) = 

ρw 

( N θθ − νN rr ) 

E 2D 

= ν
˜ ψ w 

αρw 

. (53)

To detail ˜ u (1) , we consider the stress field in the compression-free, supported region (1 ≤ ρ ≤ ρb ) where Eq. (18) is

modified by the release of the hoop stress due to buckling. We rewrite the in-plane force balance equation that reads 

d 

dr 
( r N rr ) + τ r = 0 . (54)

We can find the exact solution to Eq. (54) when the pretension is absent (see Appendix D ), 

N rr 

E 
= 

T 

2 

(
ρ2 

b ρ
−1 − ρ

)
+ C N T ρ

−1 , (55)

2D 
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where C N = − 2+ ν
3 ρ2 

b 
− ν−1 

6 ρ3 
c ρb 

−1 + 

1+ ν
2 ρc ρb and ρb = 

1 −ν+ 
√ 

9+6 ν−15 ν2 

4+8 ν ρc . The associated displacement at the edge of the

tent, 

˜ u ( 1 ) = 

∫ 1 

ρc 

N rr 

E 2 D 
dρ = 

T 

4 

(
−2 ρ2 

b ln ρb + ρ2 
b − 1 

)
− C N T ln ρb + C νT ρb ρc , (56) 

where C ν = ν( 1 + ν)[ −3( 1 + 3 ν) + 

√ 

3( 1 − ν)( 3 + 5 ν) ] / ( 4 + 8 ν) . The continuity of radial stress at ρ = 1 can then give rise

to 

αρw 

T 
(
ρ2 

b − 1 

)
+ 2 

˜ ψ w 

+ 2 αC N T ρw 

= 0 (57) 

and the continuity of the in-plane displacement, together with Eqs. (52) and (53) , leads to 

˜ ψ w 

ρw 

ln ρw 

− αC 2 w 

2 

( 1 − ρw 

) + 

ν ˜ ψ w 

ρw 

− αT 

4 

(
−2 ρ2 

b ln ρb + ρ2 
b − 1 

)
+ αC N T ln ρb − αC νT ρb ρc = 0 . (58) 

Along the line of NT modeling in Section 4 , we relate the parameter of interest (i.e. ρc and ρw 

) to the center height of

the tent, 

W 0 = W ( ρw 

) + 

∫ 0 

ρw 

−F dρ

2 π�′ = C w 

( 1 − ρw 

) + 

2 √ −α
tan 

−1 

√ 

˜ ψ w 

/ 
(
1 − ˜ ψ w 

)
. (59) 

Finally, the continuity of the tent’s slope at ρ = ρw 

should be satisfied, giving an equation for C w 

according to

Eqs. (15) and (48) 

C w 

= 

1 

ρw 

√ −α

√ 

˜ ψ w 

1 − ˜ ψ w 

(60) 

This problem containing multiple regions is then largely simplified (see Appendix D ), which is to solve analytical Eqs. (57-

60) for ρb and ρw 

with the prescribed center height of the tent W 0 and interfacial shear traction T . We find 

√ −αW 0 ∼ f ( ρw 

)

from Eqs. (59) and (60) and αT ~ g ( ρb , ρw 

) from Eq. (57) , which again enable the composite parameter T /W 

2 
0 

to select ρb 

and ρw 

. 

7. Parametric studies based on far-from-threshold modeling 

With the analytical FFT modeling, we are able to elucidate how the size of the buckled and wrinkled region evolves

with the controlling composite parameter. It is worth noting that in FFT modeling, buckling instabilities take place and ρb 

characterizes the extent of the buckled region by the size of the zero- N θθ region; in NT modeling, instabilities are suppressed

and ρc represents the supported region where sliding radially inward occurs (i.e. u < 0). The extent of the buckled region

(i.e. ρb in FFT modeling) is directly accessible to AFM-based topographical characterizations; the sheet sliding around a tent

accompanies radial tension and hoop compression – both of them vary radially, making ρc in NT modeling accessible to

Raman spectroscopy ( Kitt et al., 2013 ; Wang et al., 2017c ). 

7.1. Extent of the buckled and wrinkled region 

The ρb − T /W 

2 
0 

and ρw 

− T /W 

2 
0 

relations are plotted in Fig. 10 a and b, respectively. As expected, like the size of the

compression zone in the NT modeling, the extent of both buckled ( ρb ) and wrinkled ( 1 − ρw 

) region increases in the FFT

modeling as the composite parameter T /W 

2 
0 decreases. A key difference is that the formation of wrinkling and buckling

requires a critical T /W 

2 
0 ( ≈ 0.43), below which the buckled region appears and grows. The critical T /W 

2 
0 for the onset of

instabilities results from Poisson’s effect: a material circle (e.g. at the edge of the tent) is likely to wrinkle/buckle only when

its inward shrinkage caused by the sliding overwhelms the lateral shrinkage caused by the radial tension. This critical value

thus vanishes as the Poisson’s ratio goes to zero. 

7.2. NT and FFT modeling 

It is natural to compare FFT with NT modeling regarding how ρc evolves ( Fig. 10 a) as both types of modeling characterize

ρ = ρc by the position where the stresses decay to zero (neglecting the pretension and finite size of the sheet). We find that

these two types of modeling give close ρc − T /W 

2 
0 

prediction when ρc < 3 (the difference is within 20%), implying that the

formation of buckling and wrinkling causes only a small perturbation to the stress state of a tent under such condition.

However, the difference becomes increasingly significant as ρc grows (in particular, it grows faster in the FFT modeling). 

Besides, the spatial distribution of the hoop compression, �̄, (i.e. the shortened perimeter of a material circle) is in-

trinsically different between NT and FFT modeling. We have shown the scaling �̄ ∼ ρ−1 in the analysis of NT modeling
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Fig. 10. (a) The dependency on T /W 

2 
0 of the extent of the buckled region ρb (black solid curve, predicted by FFT analysis) and the size of the compression 

zone ρc (black solid curve predicted by FFT analysis and red dashed curve predicted by NT analysis). (b) The dependency on T /W 

2 
0 of the extent of the 

wrinkled region ρw in the suspended region of the tent (predicted by FFT analysis). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( Section 5 ) when the deformation is large, or the interfacial shear traction is small. In FFT modeling, the hoop compression

is calculated from Eq. (55) that allows the hoop compressive stress to be relaxed by buckling, 

�̄ = −2 π ˜ u = πT 

[
ρ2 

b ln 

ρb 

ρ
+ 

1 

2 

ρ2 − 1 

2 

ρ2 
b + 2 C N ln 

ρb 

ρ
+ 

( 1 − ν) ( ρc − ρb ) 
2 
( ρc + 2 ρb ) 

3 ρb 

]
. (61)

We plot �̄ as a function of ρ in Fig. 11 a for tents subject to different center heights and interfacial shear tractions. Clearly,

the �̄ ∼ ρ−1 relation breaks down (see solid and dashed curves). In addition, we find that the buckling instability brings

more slip and hence, a larger hoop compression compared with the results in the NT modeling under the same loading

condition. The physical interpretation is that the formation of the buckle delamination in the supported region makes the

sheet (and its interface) less resistive to the inward sliding. We may also draw this conclusion by considering the shortened

perimeter of the material circle at the edge of the tent, �̄1 in Fig. 11 b, where �̄1 /W 

2 
0 

depends on a single parameter, T /W 

2 
0 

.

Based on the analysis of NT modeling in Section 5 , we also expect three additional governing parameters: T pre /W 

2 
0 

, ρout , and

ρ in in this FFT modeling when the pretension, the sheet’s finite size, and the pillar’s finite radius are taken into account.

Here, we focus on the effect of the pillar’s radius because of its particular uses in the mechanical metrology of interfacial

shear traction and the design of pillar-poked tents that will be discussed in Section 8 . 

7.3. Finite pillar radius 

We still consider the exemplary case where the radial displacement is fixed at the edge of the pillar. Using the same

technique as outlined in Section 5.4 , we show exact analytical solutions based on the FFT modeling in Appendix E . Similarly,

two governing parameters appear in the FFT modeling: the radius of the pillar ρ in and the combined parameter T /W 

2 
0 . We

then show the dependency of the extent of the buckled region and wrinkled region on these two governing parameters

in Fig. 12 . To be consistent with Fig. 8 , we focus on the domain 0.001 ≤ ρ in ≤ 0.25. The results as ρ in → 0 can recover

those obtained by assuming a point force in Fig. 10 and the upper limit of ρ in also avoids ρw 

< ρ in ( Fig. 12 ). Note that

the blank regime in Fig. 12 covers the conditions under which instabilities are prohibited, and hence the nonzero radius of

a pillar essentially facilitates the onset of instabilities. In general, tents poked by sharper pillars feature a shorter extent of

the buckled and wrinkled region. However, non-monotonic behavior arises for ρw 

in the bottom right corner of the contour

plot in Fig. 12 b. It would be interesting to clarify how the growth of the wrinkled region benefits from the pillar early yet

becomes suppressed by the pillar when the wrinkle gets close to it as well as how the system behaves after the wrinkle

comes into contact with the pillar in a future study. 
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Fig. 11. (a) Hoop compressive displacement along the radial direction for various interfacial shear tractions. Solid curves denote tents with a center height 

W 0 = 0 . 2 while dashed curves denote W 0 = 0 . 02 . The markers are from NT modeling in Fig. 5 a. (b) The dependency on T /W 

2 
0 of the compressive displace- 

ment at the edge of the tent. The red dashed curve is from NT modeling in Fig. 5 c. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8. Implications for 2D material applications 

Having characterized buckles around the 2D material tent and modeled the tent with a sliding boundary analytically, we

conclude by highlighting the implications of our results for 2D-material-based applications. 

8.1. Estimation of interface adhesion 

In the nanoscale regime, the interactions between the 2D material and its substrate become relatively significant such

that the performance of 2D-material–based devices relies heavily on the mechanical behaviors of interfaces Geim and Grig-

orieva, 2013 ; Neto et al., 2009 ). This fact has motivated extensive effort s to understand the mechanics of 2D material inter-

faces, especially adhesion and friction ( Akinwande et al., 2017 ; Akinwande et al., 2014 ; Bunch and Dunn, 2012 ; Lloyd et al.,

2017 ; Zhang et al., 2017 ; Zong et al., 2010 ). In Section 3.1 , we pointed out that the crest curvature of the buckles can be

used to estimate the interface adhesion between the 2D material and its substrate after identifying the content (i.e., gas or

liquid) trapped inside the buckle. Plugging our measurements in Fig. 2 c into Eqs. (4) and ( (5) , the extracted adhesion energy

between the monolayer CVD-grown MoS 2 and Al 2 O 3 is ~1.3 mJ/m 

2 by taking the content as gas and the bending stiffness

as 10 eV ( Fig. 13 a) ( Androulidakis et al., 2018 ). If we assume that the buckles are filled with water such that γl = 72 mJ / m 

2 ,

θs = 36 ◦, and θm 

= 69 ◦ ( Kozbial et al., 2015 ; Rafiee et al., 2012 ; Santos et al., 2003 ), Eq. (6) offers a more reasonable adhe-

sion value of ~ 85.3 mJ/m 

2 , which is comparable with many adhesion values reported in the literature ( Deng et al., 2017 ;

Lloyd et al., 2017 ; Sanchez et al., 2018 ). 

We have claimed that the water-filled buckle model could give a more reasonable adhesion value (comparable previous

reports) than the gas model. The reason is that the former considers essentially three interfaces (water-membrane, water-

substrate, and membrane-substrate) such that the wetting properties of the system will contribute to the extracted value

of the membrane-substrate adhesion. However, so far there is no solid evidence for the presence of water trapped inside
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Fig. 12. Contour plots for the extent of the buckled region ρb outside the tent (a) and the extent of the wrinkled region ρw inside the tent (b) as a function 

of two governing parameters: ρ in and T /W 

2 
0 . 

 

 

 

 

 

 

 

the buckle through the SEM image in Fig. 13 b shows likely liquid fringes near the edge of the tent (the darkish region near

the white circle). The authors are working on characterizations of the trapped chemical components. It is expected that

the detailed trapped substance contains both water and hydrocarbon that are readily absorbed in the 2D material-substrate

interface ( Khestanova et al., 2016 ), thus affecting the surface tension of the liquid, contact angle, and the extracted adhesion

energy in Eq. (6) . Besides, the mixed-mode adhesive interactions between the membrane and the substrate are not consid-

ered in this work. The above-mentioned adhesion is more rigorously called adherence ( Boijoux et al., 2017 ; Faou et al., 2015 ;

Hutchinson and Suo, 1991 ). However, the difference between adhesion and adherence in our system may be small due to the
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Fig. 13. (a) The estimated adhesion energy between CVD-grown monolayer MoS 2 and the Al 2 O 3 substrate. This estimation is enabled by measuring the 

buckle profiles at different radial locations, which are offered in Fig. 3 c. Blue markers are based on gas-filled buckles and solid markers are based on 

water-filled buckles. (b) The SEM image of the monolayer MoS 2 tent in Fig. 2 a. The solid white circle highlights the edge of the tent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

facts that (i) the bending may dominate the deformation, and (ii) the interfacial shear traction is typically much weaker than

normal traction as the interface is adhered by pure van der Waals (vdW) forces and 2D materials are atomically smooth.

It would be interesting to examine the exact phase angle of mode-mix in this buckled configuration ( Faou et al., 2015 ;

Hutchinson and Suo, 1991 ), particularly with the consideration of the frictional features of the vdW interface ( Ruffini et al.,

2012a ; Ruffini et al., 2012b ). 

8.2. Estimation of interface friction (FFT) 

Our present analysis relates the size of the compression zone (in NT) and the extent of the buckled and wrinkled re-

gion (in FFT) to four governing parameters: T /W 

2 
0 , T pre /W 

2 
0 , ρout and ρ in . Experimentally, the effect of a sheet’s finite size

can be neglected, the tent height and the pillar radius can be accessible through AFM-based characterizations, while the

force terms, i.e., interfacial shear traction and pretension, are relatively elusive. The pretension was extensively used as a

fitting parameter in indentation tests and found to be less than ~ 0.4 N/m, i.e., T pre ∼ 10 −3 for graphene ( Lee et al., 2008 ).

However, the exact pretension varies heavily with materials, substrate, and transfer processes, and even appears to be neg-

ative (residual compression). Herein, we neglect the pretension effect such that we are able to estimate the interfacial shear

traction via experimentally accessible parameters, including ρb , ρ in , and W 0 . It is worth noting that the pretension may be

caused by surface tension at the outer edge of the membrane, epitaxial growth, thermal expansion and so on, which would

modify such estimation ( Dai et al., 2019a ; Davidovitch et al., 2019 ). Experimentally, mapping of Raman bands may shed

light on the level of the pretension but uncertainties are nontrivial due to the so-called doping effect from the substrate

( Dai et al., 2019a ). 

We first focus on a CVD-grown monolayer MoS 2 tent. From its AFM height and amplitude image in Fig. 14 a and b, we see

both suspended, wrinkled region and supported, buckled region. We then assume that such instabilities can relax the hoop

compressive stress in this atomically thin sheet such that our analytical FFT results in Section 7.3 can be leveraged directly.

We measure the W 0 of this monolayer MoS 2 tent from its AFM height image and determine the tent radius by line-scans

across the tent center as well as the ratio of pillar radius to tent radius ( ρ ~ 0.10). The tent’s ρ is simply estimated to be
in b 
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Fig. 14. AFM height (a) and amplitude (b) images of a monolayer MoS 2 tent, based on which ρ in , W 0 , ρb and ρw are extracted. The extent of the buckled 

region (c) and wrinkled region (d) depends on the interface shear traction T , the height of the tent W 0 , and the radius of the pillar ρ in . (b) is from Dai 

et al., 2018 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.89 ± 0.17 through the location beyond which the buckles disappear ( Fig. 14 a) and, similarly, the tent’s ρw 

is found to be

0.35 ± 0.04 ( Fig. 14 b). 

We plot the master ρb ∼ T /W 

2 
0 curve for the specific ρ in in Fig. 14 c. Plugging the geometrical parameters obtained above

into the master curve leads to shear traction ranging from 1.7 to 2.9 MPa for the CVD-grown monolayer MoS 2 on Al 2 O 3 .

However, our criterion that buckle delamination occurs in the supported region whenever the sheet is under compressive

stress may cause errors in predicting the extent of the buckled region. The errors mainly come from the fact that the onset

of buckle delamination of a sheet typically needs a nontrivial compressive strain ( Vella et al., 2009 ) because of adhesion.

Therefore, our criterion may underdetermine the extent of the buckled region and hence overestimate the traction. We also

plot the master curve for the extent of the wrinkled region in Fig. 14 d, plug the measured ρw 

into it, and find a much

weaker interfacial shear traction (~0.04 MPa). The huge inconsistency between ρw 

-based and ρb -based estimations may be

a result of the complexity in real experimental fabrications: the sheet is transferred with a pre-existing nanoparticle on the

substrate, and the complicated contact occurs spontaneously. Our model is idealized for the situation that the center height

of the tent is loaded quasi-statically, which calls for further controlled indentation experiments (possibly at larger scales)

for validations. 

8.3. Estimation of the interface friction (NT) 

We then move on to a relatively thick 2D flake, i.e. the ~15-layer graphene tent in Fig. 15 . For this multilayer sample,

the hoop compressive stress in the supported region may not be completely relaxed, and we then prefer to apply the NT

analysis developed in Section 5.4 though the difference between FFT and NT analysis here could be minor since ρc < 2.

More appropriate modeling might be achieved by considering the wrinkling instability in the suspended region of the tent
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Fig. 15. AFM height (a) and amplitude (b) images of a ~15-layer graphene tent, based on which ρ in , W 0 , and ρc are extracted. (c) The radius of the 

compression zone outside the tent depends on the interface shear traction T , the height of the tent W 0 , and the radius of the pillar ρ in . (b) is from Dai 

et al., 2018 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

but neglecting the buckle or the buckle-caused stress relaxation in the supported region (we expect that the results should

lie in between FFT and NT limits and the difference could be negligible for small ρc ). We find an obvious coffee-ring-like

domain in the supported region (see the AFM amplitude image in Fig. 15 b). Inside this domain, the local delamination (la-

beled by the arrow) takes elliptical shapes with the long axis along the radial direction of the tent. Similar features have

been observed recently in thin-film-capped droplets when an anisotropic stretch is applied to the thin film ( Schulman and

Dalnoki-Veress, 2018 ). In our case, the anisotropy within this coffee-ring-like domain should arise from the local hoop com-

pression and radial tension, i.e. N rr > N θθ , which are indeed caused by the inward sliding of the sheet ( u < 0). We therefore

approximately extract the corresponding ρc = 1 . 72 ± 0 . 26 by the outer radius of this domain. 

From the AFM height image of the multilayer graphene tent, we extract W 0 (~0.08) and ρ in (~0.07). The master ρc ∼
T /W 

2 
0 

curves for this specific ρ in is plotted in Fig. 15 c based on NT modeling. Plugging these geometrical parameters into

the master curve leads to shear traction ranging from 0.9 to 5.6 MPa for the exfoliated multilayer graphene on SiO 2 . This

result shows quantitative agreement with the shear traction, also called interfacial shear stress, which was measured to be

1-3 MPa for monolayer graphene on SiO 2 via bulging tests of drumhead specimens ( Kitt et al., 2013 ; Wang et al., 2017a ).

The relatively large uncertainty for the multilayer graphene sample comes from the uncertainty in both ρc and the number

of layers (see Section 2 , Fig. 16 ). 

8.4. Guidelines for fabricating arrays of 2D material tents 

Recently, arrays of micro-tents became a popular strategy for the periodic strain engineering of 2D materials due to their

self-sustainability and designability. A typical puzzle when designing arrays of 2D material tents comes from the dimensions



Z. Dai, D.A. Sanchez and C.J. Brennan et al. / Journal of the Mechanics and Physics of Solids 137 (2020) 103843 23 

Fig. 16. (a) Schematic of an array of 2D material tents. (b) SEM image of CVD-grown monolayer graphene on silicon pillars ( Reserbat-Plantey et al., 2014 ). 

(c) SEM image of CVD-grown monolayer graphene on lift-off resist nanopillars ( Tomori et al., 2011 ). (c) AFM image of the topography of an exfoliated 

monolayer WSe 2 flake on top of negative resist nanopillars ( Branny et al., 2017 ). (e) A Phase diagram of three configurations of 2D material tent arrays. 

 

 

 

 

 

 

 

 

 

of the supporting micro/nanopillars. Though the sharpness of pillar tips is limited by the fabrication resolution, the pillar

height H and the pillar-pillar distance D are relatively easy to control ( Fig. 11 a). However, improper design, such as D ≤ 2 R ,

may exclude the formation of tents ( Fig. 11 b); insufficient pillar-pillar distance, such as 2 R ≤ D ≤ 2 R b , may cause a network

of buckles between tents ( Fig. 11 c); isolated tents require D ≥ 2 R b ( Fig. 11 d), which have been used as strain-engineered

arrays of quantum emitters in applications ( Branny et al., 2017 ). 

Chopin et al . and Dai et al . have shown a linear relation between R and H , i.e. H/R ~ ( �γ / E 2 D ) 
1/4 , in thin membrane tent

and the prefactors at two limits (i.e. T → ∞ and T → 0) were derived ( Chopin et al., 2008 ; Dai et al., 2018 ) . Our results

in Sections 5 and 7 further provide exact solutions to the nonlinear relation between R b / R (i.e. ρb ) and T /W 

2 
0 ( W 0 = H/R )

as well as how such relation is affected by the radius of pillars. In other words, by knowing the elastic properties of the

2D material as well as the adhesion and friction properties of the 2D material-substrate interface, the configurations in Fig.
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11 b–11 d can be designedly avoided or achieved by tuning the pillar-pillar distance, the pillar radius, and the pillar height.

Furthermore, we suggest the formation of buckles may be suppressed by introducing pretension in this system (and vice

versa ). We hope that these quantitative understandings would lead to the deterministic design of arrays of 2D material tents

in the future. 

9. Conclusion 

In this article, we present experimental observations on the radial buckles formed around 2D material tents and found

an interesting characteristic length for the hoop-direction curvature of the buckle crests. A simple 1D model is adopted to

show how the buckle shape relates to the material properties and the interface adhesion properties. The dependence of the

buckle profile on the radial position further suggests that the interface sliding outside the tent may be the origin of hoop

compression and buckle delamination. We establish analytical models for cases as simple as tents subjected to a point load

at the center, zero shear traction at the interface, and zero pretension on the periphery all the way to tents with finite pillar

size, finite pretension as well as finite flake size. Two types of modeling (i.e. NT and FFT modeling) accounting for none and

complete compression relaxation are presented and may provide the upper and lower limits for this instability problem,

respectively. Several governing composite parameters have been found for each case analytically by which the design of

arrays of 2D material tents could be guided in a deterministic way. Furthermore, our theoretical analysis shows that the

simple geometrical characterization of these buckles might be utilized for the adhesion and friction metrology of the 2D

material-substrate interface. 
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Appendix A. Pretension (NT) 

We enforce the continuity of radial stress and displacement at ρ = 1 , 

�′ (1 

−)
= �′ (1 

+ ) and �′′ (1 

−)
− ν�′ (1 

−)
= �′′ (1 

+ ) − ν�′ (1 

+ ), (A1) 

which lead to 

˜ ψ 1 = −α
(
T pre + b 

)
(A2) 

and 

d 

˜ ψ 

d η
| η=1 = −αT pre . (A3) 

The continuity of displacement in Eq. (A3) , together with Eq. (26) , can give an equation for the constant α

−αT pre = 

F̄ ( −α) 
3 / 2 

4 π

√ 

1 − ˜ ψ 1 

˜ ψ 1 

. (A4) 

We can eliminate the point force in Eq. (A4) by Eq. (29) , 

α
(
T pre , ˜ ψ 1 

)
= 

1 

T pre 

[ 

1 − ˜ ψ 1 −
√ 

1 − ˜ ψ 1 

˜ ψ 1 

tan 

−1 

√ 

˜ ψ 1 (
1 − ˜ ψ 1 

)
] 

. (A5) 

If we relate α to the center height of the tent W 0 by Eq. (37) , it is readily found that the constant ˜ ψ 1 only rely on a

combined parameter, T pre /W 

2 
0 

. Also, the continuity of radial stress in Eq. (A2) indicates that b / T pre is a function of ˜ ψ 1 or

T pre /W 

2 
0 

by 

T pre 

b + T pre 
= 1 − 1 

˜ ψ 1 

+ 

√ 

1 − ˜ ψ 1 

˜ ψ 

3 
1 

tan 

−1 

√ 

˜ ψ 1 

1 − ˜ ψ 1 

. (A6) 
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Finally, the size of the compression zone can be determined by Eq. (42) 

ρ2 
c = 

1 + v 
1 − v 

b 

T pre 
, (A7)

which implies ρc ∼ ρc ( T pre /W 

2 
0 
) . 

Appendix B. Finite sheet size (NT) 

The zero radial stress in Eq. (43) gives that 

A + B = − C 

ρ2 
out 

+ 

2 + ν

3 

T ρout . (B1)

The continuity conditions of radius stress and displacement in Eq. (30) hold and can lead to 

˜ ψ 1 = −α

[(
1 − 1 

ρ2 
out 

)
C + 

2 + ν

3 

T ( ρout − 1 ) 

]
(B2)

and 

d 

˜ ψ 

d η
| η=1 = −α

(
− 1 

ρ2 
out 

C + 

2 + ν

3 

T ρout − 1 + ν

2 

T 

)
. (B3)

Still utilizing the intermediate parameter ˜ ψ 1 in Eqs. (26) and (29) , Eq. (B3) can give an equation for α

−α

(
− 1 

ρ2 
out 

C + 

2 + ν

3 

T ρout − 1 + ν

2 

T 

)
= −1 + 

˜ ψ 1 + 

√ 

1 − ˜ ψ 1 

˜ ψ 1 

tan 

−1 

√ 

˜ ψ 1 

1 − ˜ ψ 1 

. (B4)

We can further eliminate α by Eq. (B2) that provides an expression for the C/T ∼ ˜ ψ 1 relation 

−6 C/T + 2 ( 2 + ν) ρ3 
out − 3 ( 1 + ν) ρ2 

out 

6 

(
ρ2 

out − 1 

)
C/T + 2 ( 2 + ν) ( ρout − 1 ) ρ2 

out 

= 1 − 1 

˜ ψ 1 

+ 

√ 

1 − ˜ ψ 1 

˜ ψ 

3 
1 

tan 

−1 

√ 

˜ ψ 1 

1 − ˜ ψ 1 

. (B5)

We may also eliminate α in a different way, that is combining Eqs. (B2) and (37) 

˜ ψ 1 = 

4 T 

W 

2 
0 

[(
1 − 1 

ρ2 
out 

)
C 

T 
+ 

2 + ν

3 

( ρout − 1 ) 

][ 

tan 

−1 

√ 

˜ ψ 1 

1 − ˜ ψ 1 

] 2 

. (B6)

Eqs. (B5) and (B6) indicates that C / T is a function of the combined parameter T /W 

2 
0 and the geometrical parameter

ρout ( > 1). 

Appendix C. Finite pillar radius (NT) 

When the pillar radius is finite, we lose the condition of ˜ ψ (0) = 0 in Eq. (28) . Instead, the integration of Eq. (26) in this

case brings a constant term 

F̄ 
√ 

(−α) 
3 

4 π
η = −

√ 

˜ ψ 

(
1 − ˜ ψ 

)
+ tan 

−1 

√ 

˜ ψ 

1 − ˜ ψ 

+ C pil l ar . (C1)

However, this constant can be eliminated by considering the values of ˜ ψ at ρ = ρin and ρ = 1 , 

F̄ 
√ 

(−α) 
3 

4 π

(
1 − ρ2 

in 

)
= −

√ 

˜ ψ 1 

(
1 − ˜ ψ 1 

)
+ 

√ 

˜ ψ in 

(
1 − ˜ ψ in 

)
+ tan 

−1 

√ 

˜ ψ 1 

1 − ˜ ψ 1 

− tan 

−1 

√ 

˜ ψ in 

1 − ˜ ψ in 

. (C2)

The F̄ 
√ 

(−α) 3 can be related to the intermediate parameter ˜ ψ in by Eq. (26) and the condition of fixed displacement at

the edge of the tip in Eq. (46) , 

F̄ 
√ 

(−α) 
3 

4 π
= 

1 + ν

2 

ρ−2 
in 

√ 

˜ ψ 

3 
in 

1 − ˜ ψ in 

. (C3)

Then Eq. (C2) can be written as 

1 + ν

2 

√ 

˜ ψ 

3 
in 

1 − ˜ ψ in 

(
1 

ρ2 
in 

− 1 

)
= −

√ 

˜ ψ 1 

(
1 − ˜ ψ 1 

)
+ 

√ 

˜ ψ in 

(
1 − ˜ ψ in 

)
+ tan 

−1 

√ 

˜ ψ 1 

1 − ˜ ψ 1 

− tan 

−1 

√ 

˜ ψ in 

1 − ˜ ψ in 

. (C4)
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The continuity of displacement at the edge of the tent, i.e. Eq. (33) , still requires 

− αT 
1 + ν

2 

( ρc − 1 ) = 

F ( −α) 
3 / 2 

4 π

√ 

1 − ˜ ψ 1 

˜ ψ 1 

. (C5) 

By combining Eqs. (C4) , (C5) , and (31) for the continuity of radial stress, we eliminate F̄ and α: 

6 ρ2 
in ( ρc − 1 ) 

3 ( 1 + ν) ρc + ( 1 − ν) ρ3 
c − 2 ( 2 + ν) 

= 

√ 

˜ ψ 

3 
in 

(
1 − ˜ ψ 1 

)
˜ ψ 

3 
1 

(
1 − ˜ ψ in 

) . (C6) 

As we aim to relate to the size of the compression zone ρc to the height of the tent W 0 , the integration domain is from

ρ in to 1 in Eq. (36) such that 

W 0 = 

−F α

4 π

∫ ˜ ψ 1 

˜ ψ in 

d ˜ ψ 

˜ ψ 

˜ ψ 

′ = 

2 √ −α

[ 

tan 

−1 

√ 

˜ ψ 1 

1 − ˜ ψ 1 

− tan 

−1 

√ 

˜ ψ in 

1 − ˜ ψ in 

] 

, (C7) 

where Eq. (26) was used for the analytical solution. Again, using Eqs. (C7) and (31) can cancel out α and lead to 

˜ ψ 1 

[ 

tan 

−1 

√ 

˜ ψ 1 

1 − ˜ ψ 1 

− tan 

−1 

√ 

˜ ψ in 

1 − ˜ ψ in 

] −2 

= 

4 T 

W 

2 
0 

(
1 + ν

2 

ρc + 

1 − ν

6 

ρ3 
c −

2 + ν

3 

)
. (C8) 

Now, ˜ ψ in , 
˜ ψ 1 , and ρc can be analytically solved by Eqs. (C4) , (C6) , and (C8) that only depend on two parameters – they

are the size of the tip, ρ in , and the combined parameter, T /W 

2 
0 . 

Appendix D. The composite parameter (FFT) 

Eq. (54) is solved based on the continuity of the hoop and radial stresses. Particularly, in the unbuckled, supported

domain [ ρb , ρc ], Eqs. (19)–(21) hold; and at the inner boundary of this domain, the hoop stress is released to be zero,

which leads to 

ρb = 

1 − ν + 

√ 

9 + 6 ν − 15 ν2 

4 + 8 ν
ρc (D1) 

and 

N rr ( ρb ) 

E 2D 

= T 

(
−2 + ν

3 

ρb −
ν − 1 

6 

ρ3 
c ρb 

−2 + 

1 + ν

2 

ρc 

)
. (D2) 

We highlight the fast and easy implementation of our analytical solutions in calculating how the extent of wrinkles in

the suspended region and buckles in the supported region evolves. Essentially, ˜ ψ w 

= 0 . 6965 is an independent constant and

the intermediate parameters C w 

and α can be eliminated by combining Eqs. (57) , (58) , and (60) 

2 ln ρw 

+ 2 ν + 

1 

ρw 

1 − ρw 

1 − ˜ ψ w 

= 

2 ρ2 
b 

ln ρb − ρ2 
b 

+ 1 + 4 C N ln ρb − 4 C νρb ρo 

ρ2 
b 

− 1 + 2 C N 
, (D3) 

or Eqs. (57) , (59) , and (60) 

W 

2 
0 

T 

2 

˜ ψ w 

ρw 

(
ρ2 

b 
− 1 

)
+ 2 C N ρw 

= 

( 

1 − ρw 

ρw 

√ 

˜ ψ w 

1 − ˜ ψ w 

+ 2 tan 

−1 

√ 

˜ ψ w 

1 − ˜ ψ w 

) 2 

, (D4) 

where the governing parameter T /W 

2 
0 appears. 

Appendix E. Finite pillar radius (FFT) 

In this case, the unwrinkled domain becomes ρ in ≤ ρ ≤ ρw 

where ρ in < ρw 

. The integration of Eq. (26) over this domain

gives 

F 
√ 

( −α) 
3 

4 π
η = −

√ 

˜ ψ 

(
1 − ˜ ψ 

)
+ tan 

−1 

√ 

˜ ψ (
1 − ˜ ψ 

) + C pill ar . (E1) 

We eliminate the integration constant by considering boundary values of ˜ ψ at ρ = ρin and ρ = ρw 

, 

F̄ 
√ 

(−α) 
3 

4 π

(
ρ2 

w 

− ρ2 
in 

)
= −

√ 

˜ ψ w 

(
1 − ˜ ψ w 

)
+ 

√ 

˜ ψ in 

(
1 − ˜ ψ in 

)
+ tan 

−1 

√ 

˜ ψ w 

1 − ˜ ψ w 

− tan 

−1 

√ 

˜ ψ in 

1 − ˜ ψ in 

. (E2) 



Z. Dai, D.A. Sanchez and C.J. Brennan et al. / Journal of the Mechanics and Physics of Solids 137 (2020) 103843 27 

 

 

 

 

 

 

 

 , 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The condition of fixed displacement at the edge of the tip in Eq. (C3) holds. Plugging it into Eq. (E2) can give 

1 + ν

2 

√ 

˜ ψ 

3 
in 

1 − ˜ ψ in 

(
ρ2 

w 

ρ2 
in 

− 1 

)
= −

√ 

˜ ψ w 

(
1 − ˜ ψ w 

)
+ 

√ 

˜ ψ in 

(
1 − ˜ ψ in 

)
+ tan 

−1 

√ 

˜ ψ w 

1 − ˜ ψ w 

− tan 

−1 

√ 

˜ ψ in 

1 − ˜ ψ in 

(E3)

and into the condition of zero hoop stress at ρ = ρw 

, i.e. Eq. (48) , leads to 

( 1 + ν) ρ−2 
in 

√ 

˜ ψ 

3 
in 

1 − ˜ ψ in 

= ρ−2 
w 

√ 

˜ ψ 

3 
w 

1 − ˜ ψ w 

. (E4)

We note that Eqs. (57) , (58) , and (60) still apply because they are based on the continuity conditions at ρ = ρw 

and

ρ = 1 . However, to obtain the center height of the tent, Eq. (59) needs to change its integration domain, 

W 0 = W ( ρw 

) + 

ρin ∫ 
ρw 

−F dρ

2 π�′ = C w 

( 1 − ρw 

) + 

2 √ −α

[ 

tan 

−1 

√ 

˜ ψ w 

1 − ˜ ψ w 

− tan 

−1 

√ 

˜ ψ in 

1 − ˜ ψ in 

] 

. (E5)

As a result, the controlling equations discussed in Appendix D are modified, 

2 ln ρw 

+ 2 ν + 

1 

ρw 

1 − ρw 

1 − ˜ ψ w 

= 

2 ρ2 
b 

ln ρb − ρ2 
b 

+ 1 + 4 C N ln ρb − 4 C νρb ρo 

ρ2 
b 

− 1 + 2 C N 
, (E6)

W 

2 
0 

T 

2 

˜ ψ w 

ρw 

(
ρ2 

b 
− 1 

)
+ 2 C N ρw 

= 

( 

1 − ρw 

ρw 

√ 

˜ ψ w 

1 − ˜ ψ w 

+ 2 tan 

−1 

√ 

˜ ψ w 

1 − ˜ ψ w 

− 2 tan 

−1 

√ 

˜ ψ in 

1 − ˜ ψ in 

) 2 

, (E7)

With the prescribed ρ in and a given composite parameter T 

W 

2 
0 

, Eqs. (E3) , (E4) , (E6) , and (E7) complete the conditions to

determine ˜ ψ in , ˜ ψ w 

, ρw 

, and ρb . When the pillar has a finite radius, ˜ ψ w 

is not necessary to be a constant. 

References 

Akinwande, D. , Brennan, C.J. , Bunch, J.S. , Egberts, P. , Felts, J.R. , Gao, H. , Huang, R. , Kim, J.-S. , Li, T. , Li, Y. , Liechti, K.M. , Lu, N. , Park, H.S. , Reed, E.J. , Wang, P.
Yakobson, B.I. , Zhang, T. , Zhang, Y.-W. , Zhou, Y. , Zhu, Y. , 2017. A review on mechanics and mechanical properties of 2D materials—Graphene and beyond.

Extreme Mech. Lett. 13, 42–77 . 
Akinwande, D. , Petrone, N. , Hone, J. , 2014. Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 . 

Androulidakis, C. , Zhang, K. , Robertson, M. , Tawfick, S.H. , 2018. Tailoring the mechanical properties of 2D materials and heterostructures. 2D Mater. 5,
032005 . 

Aoyanagi, Y. , Hure, J. , Bico, J. , Roman, B. , 2010. Random blisters on stickers: metrology through defects. Soft Matter. 6, 5720–5728 . 

Audoly, B. , Boudaoud, A. , 2008. Buckling of a stiff film bound to a compliant substrate—Part I: formulation, linear stability of cylindrical patterns, secondary
bifurcations. J. Mech. Phys. Solids 56, 2401–2421 . 

Bhatia, N.M. , Nachbar, W. , 1968. Finite indentation of an elastic membrane by a spherical indenter. Int. J. Nonlin. Mech. 3, 307–324 . 
Boijoux, R. , Parry, G. , Coupeau, C. , 2018. Buckle depression as a signature of Young’s modulus mismatch between a film and its substrate. Thin Solid Films

645, 379–382 . 
Boijoux, R. , Parry, G. , Faou, J.-Y. , Coupeau, C. , 2017. How soft substrates affect the buckling delamination of thin films through crack front sink-in. Appl. Phys.

Lett. 110, 141602 . 

Box, F., O’Kiely, D., Kodio, O., Inizan, M., Castrejón-Pita, A .A ., Vella, D., 2019. Dynamics of wrinkling in ultrathin elastic sheets. Proc. Natl. Acad. Sci. USA,
201905755 doi: 10.1073/pnas.1905755116 . 

Branny, A. , Kumar, S. , Proux, R. , Gerardot, B.D. , 2017. Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor. Nat.
Commun. 8, 15053 . 

Brennan, C.J. , Ghosh, R. , Koul, K. , Banerjee, S.K. , Lu, N. , Yu, E.T. , 2017. Out-of-plane electromechanical response of monolayer molybdenum disulfide measured
by piezoresponse force microscopy. Nano Lett 17, 5464–5471 . 

Brennan, C.J. , Nguyen, J. , Yu, E.T. , Lu, N.S. , 2015. Interface Adhesion between 2D materials and elastomers measured by Buckle delaminations. Adv. Mater.

Interfaces 2, 1500176 . 
Budrikis, Z. , Sellerio, A.L. , Bertalan, Z. , Zapperi, S. , 2015. Wrinkle motifs in thin films. Sci. Rep. 5, 8938 . 

Bunch, J.S. , Dunn, M.L. , 2012. Adhesion mechanics of graphene membranes. Solid State Commun. 152, 1359–1364 . 
Cao, G. , Gao, H. , 2019. Mechanical properties characterization of two-dimensional materials via nanoindentation experiments. Prog. Mater. Sci. 103, 558–595 .

Chaste, J. , Missaoui, A. , Huang, S. , Henck, H. , Ben Aziza, Z. , Ferlazzo, L. , Balan, A. , Johnson, A.T.C. , Braive, R. , Ouerghi, A. , 2018. Intrinsic properties of sus-
pended MoS 2 on SiO 2 /Si pillar arrays for nanomechanics and optics. ACS Nano 12, 3235–3242 . 

Chopin, J. , Vella, D. , Boudaoud, A. , 2008. The liquid blister test. Proc. Royal Soc. A 464, 2887–2906 . 

Dai, Z. , Hou, Y. , Sanchez, D.A. , Wang, G. , Brennan, C.J. , Zhang, Z. , Liu, L. , Lu, N. , 2018. Interface-governed deformation of nanobubbles and nanotents formed
by two-dimensional materials. Phys. Rev. Lett. 121, 266101 . 

Dai, Z. , Liu, L. , Zhang, Z. , 2019a. Strain engineering of 2D materials: issues and opportunities at the interface. Adv. Mater., 1805417 . 
Dai, Z. , Wang, G. , Liu, L. , Hou, Y. , Wei, Y. , Zhang, Z. , 2016. Mechanical behavior and properties of hydrogen bonded graphene/polymer nano-interfaces.

Compos. Sci. Technol. 136, 1–9 . 
Dai, Z. , Wang, G. , Zheng, Z. , Wang, Y. , Zhang, S. , Qi, X. , Tan, P. , Liu, L. , Xu, Z. , Li, Q. , Cheng, Z. , Zhang, Z. , 2019b. Mechanical responses of boron-doped

monolayer graphene. Carbon 147, 594–601 . 

Davidovitch, B. , Schroll, R.D. , Vella, D. , Adda-Bedia, M. , Cerda, E.A. , 2011. Prototypical model for tensional wrinkling in thin sheets. Proc. Natl. Acad. Sci. USA
108, 18227–18232 . 

Davidovitch, B. , Sun, Y. , Grason, G.M. , 2019. Geometrically incompatible confinement of solids. Proc. Natl. Acad. Sci. USA 116, 1483–1488 . 
Davidovitch, B. , Vella, D. , 2018. Partial wetting of thin solid sheets under tension. Soft Matter 14, 4 913–4 934 . 

Deng, S. , Gao, E. , Xu, Z. , Berry, V. , 2017. Adhesion energy of MoS 2 thin films on silicon-based substrates determined via the attributes of a single MoS 2
wrinkle. ACS Appl. Mater. Interfaces 9, 7812–7818 . 

http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0001
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0001
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0001
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0001
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0001
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0001
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0001
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0001
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0001
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0001
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0001
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0001
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0001
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0001
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0001
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0001
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0001
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0001
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0001
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0001
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0001
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0002
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0002
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0002
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0002
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0003
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0003
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0003
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0003
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0003
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0004
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0004
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0004
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0004
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0004
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0005
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0005
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0005
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0006
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0006
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0006
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0007
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0007
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0007
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0007
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0008
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0008
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0008
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0008
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0008
https://doi.org/10.1073/pnas.1905755116
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0010
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0010
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0010
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0010
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0010
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0011
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0011
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0011
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0011
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0011
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0011
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0011
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0012
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0012
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0012
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0012
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0012
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0013
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0013
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0013
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0013
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0013
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0014
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0014
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0014
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0015
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0015
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0015
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0017
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0017
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0017
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0017
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0017
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0017
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0017
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0017
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0017
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0017
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0017
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0018
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0018
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0018
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0018
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0019
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0019
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0019
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0019
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0019
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0019
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0019
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0019
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0019
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0020
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0020
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0020
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0020
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0021
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0021
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0021
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0021
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0021
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0021
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0021
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0022
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0022
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0022
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0022
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0022
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0022
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0022
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0022
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0022
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0022
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0022
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0022
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0022
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0023
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0023
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0023
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0023
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0023
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0023
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0024
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0024
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0024
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0024
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0025
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0025
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0025
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0026
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0026
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0026
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0026
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0026


28 Z. Dai, D.A. Sanchez and C.J. Brennan et al. / Journal of the Mechanics and Physics of Solids 137 (2020) 103843 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Faou, J.-Y. , Parry, G. , Grachev, S. , Barthel, E. , 2015. Telephone cord buckles—a relation between wavelength and adhesion. J. Mech. Phys. Solids 75, 93–103 . 
Feng, J. , Qian, X. , Huang, C.-W. , Li, J. , 2012. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photon. 6, 866–872 . 

Geim, A.K. , Grigorieva, I.V. , 2013. Van der Waals heterostructures. Nature 499, 419–425 . 
Gong, L. , Kinloch, I.A. , Young, R.J. , Riaz, I. , Jalil, R. , Novoselov, K.S. , 2010. Interfacial stress transfer in a graphene monolayer nanocomposite. Adv. Mater. 22,

2694–2697 . 
Guo, G. , Zhu, Y. , 2015. Cohesive-shear-lag modeling of interfacial stress transfer between a monolayer graphene and a polymer substrate. J. Appl. Mech. 82,

031005 . 

Haigh, S. , Gholinia, A. , Jalil, R. , Romani, S. , Britnell, L. , Elias, D. , Novoselov, K. , Ponomarenko, L. , Geim, A. , Gorbachev, R. , 2012. Cross-sectional imaging of
individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 11, 764–767 . 

Huang, J. , Juszkiewicz, M. , De Jeu, W.H. , Cerda, E. , Emrick, T. , Menon, N. , Russell, T.P. , 2007. Capillary wrinkling of floating thin polymer films. Science 317,
650–653 . 

Hutchinson, J.W. , Suo, Z. , 1991. Mixed mode cracking in layered materials. In: Advances in Applied Mechanics. Elsevier, pp. 63–191 . 
Israelachvili, J.N. , 2011. Intermolecular and Surface Forces. Academic press . 

Jiang, T. , Huang, R. , Zhu, Y. , 2013. Interfacial sliding and buckling of monolayer graphene on a stretchable substrate. Adv. Funct. Mater. 24, 396–402 . 
Jiang, Y. , Mao, J. , Duan, J. , Lai, X. , Watanabe, K. , Taniguchi, T. , Andrei, E.Y. , 2017. Visualizing strain-induced pseudomagnetic fields in graphene through an

hBN magnifying glass. Nano Lett. 17, 2839–2843 . 

Jin, C. , Davoodabadi, A. , Li, J. , Wang, Y. , Singler, T. , 2017. Spherical indentation of a freestanding circular membrane revisited: analytical solutions and
experiments. J. Mech. Phys. Solids 100, 85–102 . 

Khestanova, E. , Guinea, F. , Fumagalli, L. , Geim, A.K. , Grigorieva, I.V. , 2016. Universal shape and pressure inside bubbles appearing in van der Waals het-
erostructures. Nat. Commun. 7, 12587 . 

Kitt, A.L. , Qi, Z. , Rémi, S. , Park, H.S. , Swan, A.K. , Goldberg, B.B. , 2013. How graphene slides: Measurement and theory of strain-dependent frictional forces
between graphene and SiO 2 . Nano. Lett. 13, 2605–2610 . 

Klimov, N.N. , Jung, S. , Zhu, S. , Li, T. , Wright, C.A. , Solares, S.D. , Newell, D.B. , Zhitenev, N.B. , Stroscio, J.A. , 2012. Electromechanical properties of graphene

drumheads. Science 336, 1557–1561 . 
Koenig, S.P. , Boddeti, N.G. , Dunn, M.L. , Bunch, J.S. , 2011. Ultrastrong adhesion of graphene membranes. Nat. Nanotechnol. 6, 543–546 . 

Komaragiri, U. , Begley, M. , Simmonds, J. , 2005. The mechanical response of freestanding circular elastic films under point and pressure loads. J. Appl. Mech.
72, 203–212 . 

Kozbial, A. , Gong, X. , Liu, H. , Li, L. , 2015. Understanding the intrinsic water wettability of molybdenum disulfide (MoS 2 ). Langmuir 31, 8429–8435 . 
Lee, C. , Wei, X. , Kysar, J.W. , Hone, J. , 2008. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 . 

Li, H. , Contryman, A.W. , Qian, X. , Ardakani, S.M. , Gong, Y. , Wang, X. , Weisse, J.M. , Lee, C.H. , Zhao, J. , Ajayan, P.M. , 2015. Optoelectronic crystal of artificial

atoms in strain-textured molybdenum disulphide. Nat. Commun. 6, 7381 . 
Liu, Z. , Yang, J. , Grey, F. , Liu, J.Z. , Liu, Y. , Wang, Y. , Yang, Y. , Cheng, Y. , Zheng, Q. , 2012. Observation of microscale superlubricity in graphite. Phys. Rev. Lett.

108, 205503 . 
Lloyd, D. , Liu, X. , Boddeti, N. , Cantley, L. , Long, R. , Dunn, M.L. , Bunch, J.S. , 2017. Adhesion, stiffness, and instability in atomically thin MoS 2 bubbles. Nano

Lett. 17, 5329–5334 . 
Lu, Q. , Arroyo, M. , Huang, R. , 2009. Elastic bending modulus of monolayer graphene. J. Phys. D: Appl. Phys. 42, 102002 . 

Mansfield, E.H. , 2005. The Bending and Stretching of Plates. Cambridge University Press . 

Neto, A.C. , Guinea, F. , Peres, N. , Novoselov, K. , Geim, A. , 2009. The electronic properties of graphene. Rev. Mod. Phys. 81, 109 . 
Palacios-Berraquero, C. , Kara, D.M. , Montblanch, A.R.-P. , Barbone, M. , Latawiec, P. , Yoon, D. , Ott, A.K. , Loncar, M. , Ferrari, A.C. , Atatüre, M. , 2017. Large-scale

quantum-emitter arrays in atomically thin semiconductors. Nat. Commun. 8, 15093 . 
Parry, G. , Colin, J. , Coupeau, C. , Foucher, F. , Cimetière, A. , Grilhé, J. , 2005. Effect of substrate compliance on the global unilateral post-buckling of coatings:

AFM observations and finite element calculations. Acta Mater. 53, 4 41–4 47 . 
Pizzocchero, F. , Gammelgaard, L. , Jessen, B.S. , Caridad, J.M. , Wang, L. , Hone, J. , Boggild, P. , Booth, T.J. , 2016. The hot pick-up technique for batch assembly of

van der Waals heterostructures. Nat. Commun. 7, 11894 . 

Py, C. , Reverdy, P. , Doppler, L. , Bico, J. , Roman, B. , Baroud, C.N. , 2007. Capillary origami: spontaneous wrapping of a droplet with an elastic sheet. Phys. Rev.
Lett. 98, 156103 . 

Rafiee, J. , Mi, X. , Gullapalli, H. , Thomas, A.V. , Yavari, F. , Shi, Y. , Ajayan, P.M. , Koratkar, N.A. , 2012. Wetting transparency of graphene. Nat. Mater. 11, 217–222 .
Reserbat-Plantey, A. , Kalita, D. , Han, Z. , Ferlazzo, L. , Autier-Laurent, S. , Komatsu, K. , Li, C. , Weil, R.L. , Ralko, A. , Marty, L.T. , 2014. Strain superlattices and

macroscale suspension of graphene induced by corrugated substrates. Nano Lett. 14, 5044–5051 . 
Ruffini, A. , Durinck, J. , Colin, J. , Coupeau, C. , Grilhé, J. , 2012a. Effects of sliding on interface delamination during thin film buckling. Scripta Mater. 67,

157–160 . 

Ruffini, A. , Durinck, J. , Colin, J. , Coupeau, C. , Grilhé, J. , 2012b. Gliding at interface during thin film buckling: a coupled atomistic/elastic approach. Acta Mater.
60, 1259–1267 . 

Sadd, M.H. , 2009. Elasticity: Theory, Applications, and Numerics. Academic Press . 
Sanchez, D.A. , Dai, Z. , Wang, P. , Cantu-Chavez, A. , Brennan, C.J. , Huang, R. , Lu, N. , 2018. Mechanics of spontaneously formed nanoblisters trapped by trans-

ferred 2D crystals. Proc. Natl. Acad. Sci. USA 115, 7884–7889 . 
Santos, F.d.P. , Campos, E.d. , Costa, M. , Melo, F.C.L. , Honda, R.Y. , Mota, R.P. , 2003. Superficial modifications in TiO 2 and Al 2 O 3 ceramics. Mater. Res. 6, 353–357 .

Schroll, R. , Adda-Bedia, M. , Cerda, E. , Huang, J. , Menon, N. , Russell, T. , Toga, K. , Vella, D. , Davidovitch, B. , 2013. Capillary deformations of bendable films.
Phys. Rev. Lett. 111, 014301 . 

Schulman, R.D. , Dalnoki-Veress, K. , 2018. Droplets capped with an elastic film can be round, elliptical, or nearly square. Phys. Rev. Lett. 121, 248004 . 

Timoshenko, S.P. , Gere, J.M. , 2009. Theory of Elastic Stability. Courier Dover Publications . 
Tomori, H. , Kanda, A. , Goto, H. , Ootuka, Y. , Tsukagoshi, K. , Moriyama, S. , Watanabe, E. , Tsuya, D. , 2011. Introducing nonuniform strain to graphene using

dielectric nanopillars. Appl. Phys. Express 4, 075102 . 
Vella, D. , 2019. Buffering by buckling as a route for elastic deformation. Nat. Rev. Phys. 1, 425–436 . 

Vella, D. , Adda-Bedia, M. , Cerda, E. , 2010. Capillary wrinkling of elastic membranes. Soft Matter 6, 5778–5782 . 
Vella, D. , Bico, J. , Boudaoud, A. , Roman, B. , Reis, P.M. , 2009. The macroscopic delamination of thin films from elastic substrates. Proc. Natl. Acad. Sci. USA

106, 10901–10906 . 

Vella, D. , Davidovitch, B. , 2017. Indentation metrology of clamped, ultra-thin elastic sheets. Soft Matter 13, 2264–2278 . 
Vella, D. , Davidovitch, B. , 2018. Regimes of wrinkling in an indented floating elastic sheet. Phys. Rev. E 98, 013003 . 

Vella, D. , Huang, J. , Menon, N. , Russell, T.P. , Davidovitch, B. , 2015. Indentation of ultrathin elastic films and the emergence of asymptotic isometry. Phys. Rev.
Lett. 114, 014301 . 

Wang, G. , Dai, Z. , Liu, L. , Hu, H. , Dai, Q. , Zhang, Z. , 2016. Tuning the interfacial mechanical behaviors of monolayer graphene/PMMA nanocomposites. ACS
Appl. Mater. Interfaces 8, 22554–22562 . 

Wang, G. , Dai, Z. , Wang, Y. , Tan, P. , Liu, L. , Xu, Z. , Wei, Y. , Huang, R. , Zhang, Z. , 2017a. Measuring interlayer shear stress in bilayer graphene. Phys. Rev. Lett.

119, 036101 . 
Wang, G. , Dai, Z. , Xiao, J. , Feng, S. , Weng, C. , Liu, L. , Xu, Z. , Huang, R. , Zhang, Z. , 2019. Bending of multilayer van der Waals materials. Phys. Rev. Lett. 123,

116101 . 
Wang, G. , Gao, E. , Dai, Z. , Liu, L. , Xu, Z. , Zhang, Z. , 2017b. Degradation and recovery of graphene/polymer interfaces under cyclic mechanical loading. Compos.

Sci. Technol. 149, 220–227 . 

http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0027
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0027
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0027
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0027
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0027
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0028
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0028
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0028
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0028
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0028
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0029
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0029
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0029
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0030
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0030
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0030
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0030
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0030
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0030
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0030
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0031
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0031
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0031
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0032
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0032
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0032
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0032
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0032
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0032
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0032
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0032
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0032
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0032
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0032
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0033
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0033
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0033
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0033
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0033
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0033
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0033
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0033
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0034
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0034
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0034
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0035
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0035
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0036
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0036
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0036
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0036
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0037
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0037
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0037
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0037
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0037
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0037
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0037
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0037
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0038
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0038
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0038
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0038
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0038
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0038
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0039
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0039
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0039
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0039
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0039
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0039
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0040
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0040
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0040
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0040
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0040
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0040
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0040
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0041
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0041
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0041
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0041
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0041
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0041
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0041
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0041
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0041
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0041
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0042
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0042
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0042
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0042
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0042
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0043
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0043
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0043
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0043
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0044
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0044
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0044
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0044
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0044
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0045
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0045
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0045
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0045
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0045
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0046
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0046
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0046
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0046
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0046
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0046
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0046
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0046
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0046
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0046
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0046
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0047
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0047
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0047
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0047
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0047
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0047
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0047
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0047
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0047
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0047
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0048
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0048
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0048
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0048
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0048
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0048
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0048
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0048
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0049
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0049
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0049
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0049
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0050
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0050
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0051
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0051
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0051
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0051
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0051
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0051
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0052
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0052
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0052
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0052
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0052
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0052
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0052
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0052
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0052
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0052
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0052
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0053
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0053
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0053
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0053
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0053
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0053
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0053
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0054
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0054
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0054
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0054
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0054
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0054
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0054
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0054
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0054
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0055
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0055
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0055
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0055
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0055
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0055
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0055
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0056
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0056
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0056
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0056
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0056
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0056
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0056
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0056
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0056
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0057
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0057
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0057
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0057
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0057
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0057
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0057
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0057
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0057
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0057
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0057
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0058
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0058
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0058
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0058
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0058
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0058
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0059
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0059
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0059
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0059
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0059
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0059
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0060
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0060
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0061
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0061
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0061
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0061
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0061
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0061
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0061
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0061
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0062
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0062
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0062
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0062
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0062
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0062
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0062
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0063
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0063
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0063
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0063
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0063
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0063
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0063
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0063
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0063
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0063
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0064
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0064
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0064
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0065
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0065
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0065
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0066
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0066
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0066
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0066
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0066
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0066
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0066
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0066
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0066
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0067
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0067
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0068
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0068
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0068
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0068
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0069
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0069
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0069
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0069
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0069
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0069
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0070
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0070
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0070
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0071
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0071
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0071
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0072
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0072
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0072
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0072
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0072
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0072
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0073
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0073
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0073
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0073
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0073
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0073
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0073
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0074
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0074
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0074
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0074
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0074
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0074
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0074
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0074
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0074
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0074
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0075
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0075
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0075
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0075
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0075
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0075
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0075
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0075
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0075
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0075
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0076
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0076
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0076
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0076
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0076
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0076
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0076


Z. Dai, D.A. Sanchez and C.J. Brennan et al. / Journal of the Mechanics and Physics of Solids 137 (2020) 103843 29 

 

 

 

Wang, G. , Li, X. , Wang, Y. , Zheng, Z. , Dai, Z. , Qi, X. , Liu, L. , Cheng, Z. , Xu, Z. , Tan, P. , 2017c. Interlayer coupling behaviors of boron doped multilayer graphene.
J. Phys. Chem. C 121, 26034–26043 . 

Xu, Z. , Zheng, Q. , 2018. Micro-and nano-mechanics in China: A brief review of recent progress and perspectives. Sci. China Phys. Mech. Astron. 61, 074601 . 
Zhang, D.-B. , Akatyeva, E. , Dumitric ̆a, T. , 2011. Bending ultrathin graphene at the margins of continuum mechanics. Phys. Rev. Lett. 106, 255503 . 

Zhang, K. , Arroyo, M. , 2016. Coexistence of wrinkles and blisters in supported graphene. Extreme Mech. Lett. 14, 23–30 . 
Zhang, K. , Tadmor, E.B. , 2018. Structural and electron diffraction scaling of twisted graphene bilayers. J. Mech. Phys. Solids 112, 225–238 . 

Zhang, Q.T. , Yin, H. , 2018. Spontaneous buckling-driven periodic delamination of thin films on soft substrates under large compression. J. Mech. Phys. Solids

118, 40–57 . 
Zhang, Y. , Liu, Q. , Xu, B. , 2017. Liquid-assisted, etching-free, mechanical peeling of 2D materials. Extreme Mech. Lett. 16, 33–40 . 

Zong, Z. , Chen, C.-L. , Dokmeci, M.R. , Wan, K.-T. , 2010. Direct measurement of graphene adhesion on silicon surface by intercalation of nanoparticles. J. Appl.
Phys. 107, 026104 . 

http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0077
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0077
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0077
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0077
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0077
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0077
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0077
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0077
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0077
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0077
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0077
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0078
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0078
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0078
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0079
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0079
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0079
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0079
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0080
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0080
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0080
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0081
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0081
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0081
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0082
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0082
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0082
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0083
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0083
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0083
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0083
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0084
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0084
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0084
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0084
http://refhub.elsevier.com/S0022-5096(19)30433-8/sbref0084

	Radial buckle delamination around 2D material tents
	1 Introduction
	2 Experimental methods
	3 Experiments
	3.1 The shape of radial buckles
	3.2 1D analysis
	3.3 The formation mechanism of radial buckles

	4 Near-threshold modeling
	4.1 General theory
	4.2 Non-dimensionalization
	4.3 Analytical results: outside the tent
	4.4 Analytical results: inside the tent
	4.5 A composite parameter

	5 Parametric studies based on near-threshold modeling
	5.1 Interfacial shear traction
	5.2 Pretension
	5.3 Finite size of 2D materials
	5.4 Finite pillar radius

	6 Far-from-threshold modeling
	7 Parametric studies based on far-from-threshold modeling
	7.1 Extent of the buckled and wrinkled region
	7.2 NT and FFT modeling
	7.3 Finite pillar radius

	8 Implications for 2D material applications
	8.1 Estimation of interface adhesion
	8.2 Estimation of interface friction (FFT)
	8.3 Estimation of the interface friction (NT)
	8.4 Guidelines for fabricating arrays of 2D material tents

	9 Conclusion
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Pretension (NT)
	Appendix B Finite sheet size (NT)
	Appendix C Finite pillar radius (NT)
	Appendix D The composite parameter (FFT)
	Appendix E Finite pillar radius (FFT)
	References


