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Introduction

The first two-dimensional (2D) atomic crystal available, gra-
phene—a closely packed 2D sp2-bonded carbon honeycomb 
lattice—has proven to be a remarkable material because of its 
unique physical properties [1–5]. However, for various prac-
tical applications of graphene sheets, such as nanocomposites 
[6, 7], nano/micro-scale systems [8–10] and macroscopically 
multifunctional self-assemblies [11–13], the emergence of 
chemical modification in the graphene lattice is inevitable 
or even essential, either because of the production process 
or operating requirements. For instance, functionalizing gra-
phene sheets with various oxygen functional groups is crit-
ical for the desired interfacial adhesions in graphene-based 

nanocomposites, in which the outstanding mechanical per-
formance of graphene can be effectively transferred across 
a multiple length scale up to the macroscopic level [14–17]. 
Apart from being a precursor for graphene, the surface-rich 
oxygen functional groups of graphene oxide (GO) provide its 
excellent properties, and hence GO itself can be useful in flex-
ible electronics, battery electrodes, and paper-like composite 
materials [18–24].

In addition to the elegant process of GO-based multifunc-
tional applications, GO also offers the significant opportunity 
to fundamentally explore how the chemical functionalities 
influence the atomistic mechanical performance on its basal 
plane. Zheng et  al reported that Young’s modulus depends 
greatly on the degree of functionalization [25]. Liu et  al 
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Abstract
Using molecular dynamics (MD) simulations, we investigate the elastic–plastic mechanical 
performances of monolayer graphene oxide (GO) under uniaxial tension. The brittle–ductile–
brittle transition and nonlinear–linear–nonlinear elastic transition is found in the uniaxial 
tension of GO, which displays strong correlations to the content, distribution and proportion 
of oxygen functional groups. In principle, the tensile behavior of graphene with epoxy 
groups exhibits ductile fracture features due to the unique epoxy-to-ether transformation in 
structural evolution. Our simulation results also reveal that wrinkling could cause a competing 
mechanism of strain-hardening or -softening, and in turn, the nonlinear–linear elasticity 
transition. Moreover, we propose a continuum mechanical model with a modified stress–strain 
relation to understand the unique deformation performances, which is consistent with the MD 
results. These findings might provide valuable insight and design guidelines for optimizing the 
specific mechanical properties and deformation behaviors of graphene and its derivatives.
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comparatively studied Young’s modulus and the intrinsic 
strength of amorphous and ordered GOs by first-principles 
calculations [26]. Some theoretical and experimental meas-
urements also revealed the effective Young’s modulus and 
intrinsic strength of GO and its dependence on the density of 
the oxygen functional groups [27–31]. More recently, some 
novel mechanical phenomena have been observed in a one-
atom-thick sheet such as flaw insensitivity [32–36], chemical 
functionality-induced plasticity and ductility on GO [37].

Although these studies validate the fact that the variety 
and content of the oxygen functional groups can significantly 
affect the mechanical properties and behaviors of GO, the rela-
tionship between the structure and mechanical properties at 
the atomic scale is still not comprehensively understood, espe-
cially for the underlying mechanism of anomalous mechan-
ical behaviors, such as the plasticity and linear elasticity of 
GO. Furthermore, it is of great importance to study not only 
the strength and stiffness but the fracture and deformation 
performance of graphene for its electro-mechanical applica-
tions. An interesting question, which has not been answered 
in previous studies, is how different functionalizations affect 
the mechanical behavior of GO. Actually, due to the compli-
cacy of the nanostructure of GO, more theoretical studies and 
simulations are needed to solve this problem.

In this study, we reveal that the content, distribution and 
proportion of oxygen functional groups dominate the mechan-
ical properties of GO. Using molecular dynamics (MD) simu-
lations, we demonstrate some anomalous in-plane mechanical 
properties of GO with different distributions of epoxy groups 
and hydroxyl groups which stem from the unique epoxy-to-
ether transformation during structural evolution. These results 
reveal a unique perspective to engineer the elastic–plastic 
properties of graphene via oxygen functional groups.

Models and methods

The first principles-based reactive force field (ReaxFF) was 
used in the MD simulations to describe the mechanical and 
chemical behaviors as well as the bond formation and fracture 
of graphene and GO using the LAMMPS package [38]. The 
ReaxFF potential function uses distance-dependent bond-order 
functions to represent the contributions of chemical bonding to 
the potential energy. The intralayer chemical interaction such 
as the covalent bond and hydrogen bond are both considered, 
while long-range forces between different layers, such as the 
hydrogen bond and van der Waals interaction, are not consid-
ered [15, 38–44]. In our MD simulations, both the formation or 
recombination of chemical bonds are considered in the simu-
lations at the same time because the formation or recombina-
tion of the chemical bonds could occur simultaneously. The 
ReaxFF parameter set used in this manuscript was provided 
by the supplemental information in previous work [45]. The 
MD simulation was performed in the NPT ensemble using 
the Nose–Hoover thermostat to enable volume variation, and 
the temperature was controlled at 300 K with a damping con-
stant of 100 fs [46]. The pressure of the system was kept at 0 
atm during thermal equilibration to eliminate the influence of 

external pressure on the material properties. After the structure 
was relaxed for 10 ps, the uniaxial strain-controlled tension was 
applied by deforming the simulation box along the x or y direc-
tion (zigzag or armchair, as can be seen in figure 1). The time 
history of the pressure and temperature for the late period of 
the 10 ps equilibration of these samples is shown in figure S1 
(available online at stacks.iop.org/JPhysD/50/385305/mmedia) 
to verify the stability of the GO model. In our simulations, a 
time step of 0.25 fs was used in the velocity-Verlet integrator. 
Periodic boundary conditions were imposed in all three direc-
tions. The 2 nm vacuum layers were maintained along the z 
direction to ensure the free surface of monolayer GO. Energy 
minimization was performed using a conjugate-gradient algo-
rithm with an energy-convergence criterion. The virial stress 
tensor was computed with the assumed thickness (0.7 nm) of 
monolayer GO [47]. The equivalence of the virial stress and 
Cauchy stress has been verified [48]. Based on the theory of 
continuum mechanics, the Cauchy stresses are related to the 
second Piola–Kirchhoff stresses Σ as [49]:

Σ = JF−1σ
(
F−1)T

,� (1)

where J is the determinant of the deformation gradient tensor 
F.

The Lagrangian strain η is determined by the engineering 
strain ε via the equation [49]:

η = ε+
1
2
ε2.� (2)

In fact, the atomistic structure of monolayer GO is compli-
cated and remains controversial. Many experiments demon-
strated that GO contains several typical oxygen functional 
groups such as epoxy, hydroxyl, carbonyl, carboxyl, etc   
[50–52], but epoxy and hydroxyl groups have been studied 
mostly for their impact on mechanical properties [26, 27, 53].  

Figure 1.  Top view of the monolayer graphene oxide (GO) 
with randomly distributed oxygen functional groups in the MD 
simulations, where A and D represent the armchair-arranged and 
diagonally-arranged epoxy groups, respectively, and R represents 
the randomly-arranged epoxy and hydroxyl groups. The gray balls 
denote carbon atoms in GO. The red and white balls represent 
oxygen and hydrogen atoms, respectively.
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Even though the experiments demonstrated that GO is amor-
phous [54, 55], some theoretical investigations suggested 
that the ordered structures are thermodynamically favorable 
[56–58]. Three basic hexagonal units in the GO model are 
illustrated in figure 1, marked as A (epoxy groups arranged in 
the armchair direction), D (epoxy groups arranged in the diag-
onal direction), and R (epoxy and hydroxyl groups randomly 
arranged), respectively. To investigate the mechanical proper-
ties of GO and the corresponding mechanisms, MD models 
were built based on the three different atomistic distributions 
of oxygen functional groups in figure 1, that is, A-GO, D-GO, 
and R-GO, respectively. Here, the oxygen content is defined 
as f  =  Noxygen/Ncarbon, and the ratio among different func-
tional groups is defined as ϕ  =  Nepoxy/Nhydroxyl. For example, 
as shown in figure 1, a 5.0  ×  5.0 nm2 GO monolayer model 
consisting of 1008 carbon atoms was constructed with 280 
epoxy groups and 70 hydroxyl groups randomly positioned 
( f  =  0.35, ϕ  =  4).

Results and discussion

The influence of the content of oxygen functional groups

Previous experimental studies revealed that the oxygen content 
of GO is variable which has a great influence on the physical 
properties of GO (the studies revealed that varying the content 
of oxygen in GO influences the physical properties of GO) [59, 
60]. Engineering the mechanical properties of GO by means 
of (modulating/changing) the oxygen content is an effec-
tive method for researchers. According to previous studies, a 
series of uniaxial tensile MD simulations were performed over 
a wide range of the oxygen content (0.05  ⩽  f  ⩽  0.45) in order 
to study the influence of oxygen content on the mechanical 
properties of GO (ϕ  =  4:1). Interestingly, when the oxygen 
content f increases, the monolayer GO turns into plastic and 
then transforms from ductile fracture into brittle fracture since 
the oxygen content reaches the critical value, as shown in fig-
ures 2(a) and (b). This means that there is a brittle–plastic–
brittle transition in amorphous GO with an increase in oxygen 
content. For GO with low oxygen content (f  ⩽  0.05), the frac-
ture mode is the same as that of pure graphene, which is brittle 
because of the linear defect evolution [61]. When the oxygen 

content increases ( f  =  0.05–0.25), the closed-ring defect evo
lution induced by the epoxy-to-ether transformation causes a 
ductile fracture, which has been verified in experiments [37]. 
When the content of the oxygen functional groups is larger 
than a certain proportion ( f  ⩾  0.45), the sp3 C–O–C bond net-
work will be the main load-bearing part instead of the mixed 
network of sp2 and sp3 C–C bonds, resulting in linear crack 
propagation because of the absence of an energy difference. 
Compared with the results in armchair and zigzag tension, 
it can be found that GO shows different fracture behaviors 
depending on the tension direction and oxygen content. The 
results of the strength and elastic modulus are demonstrated in 
figure S2. It is found that the strength in the armchair direction 
decreases from 100  GPa–20 GPa when the f increases from 
0–0.45, while in the zigzag direction the strength reduces 
from 120 GPa–20 GPa. The chiral dependence of the mechan-
ical properties of GO disappears with the increasing oxygen 
content, similar to the previous MD study [27]. Figure  S1 
shows that GO with a high oxygen content is orthogonal iso-
tropic when the oxygen content f is larger than 0.6, which is 
mainly due to the role of diagonal symmetric defects, while 
the inset shows that the elastic modulus drops alternately, 
which may be attributed to the synergistic effects of the dif-
ferent distributions of the functional groups in amorphous GO 
models. Moreover, we conclude that the distributions of type 
A and type D will convert to each other with the increasing 
tensile strain as well as the oxygen content because of the 
large deformation of bond angles and the epoxy-to-ether  
transformation.

The influence of the distribution of oxygen functional groups

To clarify the plastic property of GO, 150 epoxy groups were 
first distributed along the armchair direction on the monolayer 
A-GO (  f  =  0.15, ϕ  =  ∞). The oxygen atom in the epoxy group 
and two carbon atoms in the hexatomic ring form a triangle, 
as shown in figure  3(a) with a green dotted box. To  obtain 
the tensile behavior of A-GO, uniaxial tension tests were per-
formed in the MD simulation. Chirality-dependence exists 
due to the unidirectional distribution of epoxy groups, which 
leads to obviously different properties in the mechanics along 
the zigzag and armchair direction respectively. It is found that 

Figure 2.  (a), (b) Mechanical properties (stress–strain) of monolayer GO ( f  =  0.15, ϕ  =  4) under uniaxial tension in the armchair and 
zigzag direction, respectively.

J. Phys. D: Appl. Phys. 50 (2017) 385305
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the Young’s modulus is 400 GPa and the strength is 46 GPa 
in zigzag tension for graphene sheets with armchair-arranged 
epoxy groups, which is approximately twice that of armchair 
tension. However, the fracture strain is 0.11 in zigzag tension, 
which is much smaller than that in armchair tension (0.25), 
indicating that there are different fracture mechanisms. The 
fracture behaviors in the two directions further highlight such 
chirality-dependent mechanical performances as exhibited in 
the stress–strain curves (figure 3(a)). Analogous to the tearing 
fracture mode in pristine graphene [62], brittle fracture happens 
when the tensile strain is beyond 0.11 (red squares) in zigzag 
tension. In contrast, when the tensile test is applied in the arm-
chair direction (cyan circles), the monolayer A-GO exhibits 
ductile fracture when the tensile strain is beyond 0.14. After 
the armchair-direction unloading of A-GO (figure 3(b)), the 
residual strain can be observed, demonstrating the plasticity of 
A-GO in armchair tension.

To shed light on the chirality-dependent plasticity, we fur-
ther investigate the structural evolution of A-GO under uniaxial 
tension. In our simulations, the structural snapshots reveal that 
linear crack propagation (red dotted box in figure 3(a)) arises 
in zigzag tension, while closed C–O rings (cyan dotted box 
in figure 3(a)) form in armchair tension. Here, the armchair-
arranged epoxy groups lead to this difference in the fracture 
behaviors. When the tensile test is applied in the armchair 
direction, the C–O–C triangles become the main stress struc-
tures, where the C–C sp3 bond breaks antecedent to the C–O 
sp3 bond, accompanied by the transformation from epoxy to 
ether [37]. Many hexagon units in A-GO are transformed into 
heptagon or octagon defects, corresponding to the dissipation 
of potential energy. Simultaneously, the epoxy-to-ether trans-
formation induces the formation of polygonal closed C–O 
rings to suppress the crack propagation, resulting in the duc-
tile fracture behavior for the whole structure. Consequently, 
the A-GO exhibits a plastic characteristic in the armchair 
direction. The residual strain and snapshots of the structural 
evolution further indicate that the closed-ring defects are 
irreversible and stable (figure 3(b)). Nevertheless, those arm-
chair-arranged epoxy groups have no obvious influence on the 
mechanical properties of graphene oxide in zigzag tension, 
so linear crack propagation occurs in zigzag direction. It  is 

worth noting that A-GO has higher strength but with a lower 
fracture strain in the zigzag-direction tension test, which con-
trasts with the results tested in the armchair direction. Briefly, 
the plasticity as well as the chirality-dependent mechanical 
properties of GO can be achieved by armchair-directionally 
arranging the epoxy groups because of the closed-ring defect 
evolution mechanisms, which is the main reason for the duc-
tile fracture of GO.

A different type of epoxy distribution model, D-GO 
( f  =  0.15, ϕ  =  ∞), with 150 epoxy groups distributed along 
the diagonal direction, is also studied here. The stress–strain 
results under uniaxial tension are illustrated in figure  4(a), 
where the D-GO exhibits orthogonal isotropic mechanical 
behaviors. According to the results in figure 4(a), the strengths 
(σs1, σs2 ~ 40 GPa) in two orthogonal directions have a close 
value instead of the mechanical chirality-dependency in 
A-GO, and Young’s modulus (E0 ~ 200 GPa), calculated by 
fitting the initial linear part of the stress–strain curve, is also 
nearly identical. The schematic illustration in figure  4(b) 
clearly reveals the underlying mechanism of the weakening 
chirality-dependence observed in the D-GO samples. It can 
be found that the hexagon unit tends to be transformed into 
an octagon defect, which is typical in the diagonal symmetry. 
Meanwhile, the ultimate stress of D-GO is mainly determined 
by those defects instead of the sp2 C–C bond network since 
the number of epoxy groups reaches a certain proportion, 
resulting in orthogonal isotropic properties, as observed in the 
monolayer D-GO.

However, after a certain applied strain (i.e. beyond 0.04), the 
graphene with diagonally-arranged epoxy groups exhibits an 
obvious nonlinear stress–strain relation and different stiffnesses 
in the armchair and zigzag (directional) tension (E1 ~ 310 GPa, 
E2 ~ 210 GPa). Here, we propose two deformation mechanisms 
for this nonlinear behavior of D-GO. The first mechanism is the 
elongation of the C–C sp2 bonds, while the second is the elon-
gation and rotation of the C–O sp3 bonds. Previous studies have 
verified that the existence of vacancy defects and the flexibility 
of sp3 C–C bonds can result in a significantly decreased mod-
ulus of the GO compared to that of pristine graphene [4, 30]. 
Similarly, the sp3 C–O bond deformation mechanism can cause 
a lower D-GO modulus. In our simulations, we attribute the 

Figure 3.  (a) Mechanical properties (stress–strain) of monolayer A-GO ( f  =  0.15, ϕ  =  ∞) under uniaxial tension in zigzag (red 
squares) and armchair (cyan circles) directions. Typical snapshots of structural evolution are exhibited in the red and cyan dotted boxes, 
corresponding to different defect evolution mechanisms. (b) The loading–unloading process of A-GO in the armchair direction. The insets 
denote snapshots in the structural evolution, corresponding to the marked locations in the stress–strain curves, respectively.

J. Phys. D: Appl. Phys. 50 (2017) 385305
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activation of such deformation mechanisms to the difference 
in the critical strains of the epoxy-to-ether transformation in 
two directions. This difference can be easily demonstrated by 
the variation of bond angles, as shown in figure  4(c), where 
the relevant bond angles are marked as α and γ, respectively. 
Critically, when the strain is beyond 0.04, α decreases gradu-
ally, which means the ether group turns to the tensile direction. 
Such a difference results in an easy epoxy-to-ether transforma-
tion in the zigzag-direction tension. Similarly, the bond angle 
γ shows a slump when the strain is ~0.04 (figure 4(d)) in the 
armchair direction. However, in the zigzag direction, γ shows 
a slump when the strain is ~0.1, corresponding to the fracture 
strain. It should be noted that the slump of γ means a rise 
in the epoxy-to-ether transformation, resulting in the C–O sp3 
bonds dominating the stiffness. In a word, diagonally-arranged 
epoxy groups lead to a delay in the epoxy-to-ether transforma-
tion so that the D-GO sheet shows a modulus difference under 
large deformation in two directional tensions.

In an effort to study the corresponding fracture behaviors, 
the structural snapshots of the D-GO under zigzag-direction 
tension are shown in the insets of figure  4(a). The stairs in 
the stress–strain curves indicate that a stepwise brittle frac-
ture occurs with a decrease in the associated strength in both 
the armchair and zigzag directions because the stress reaches 
its ultimate value. In simple terms, cracks grow out from the 
epoxy-to-ether transformation and then propagate along the 
nearby C–O–C bonds, just like the longitudinal unzipping 
in a carbon nanotube [63]. Subsequently, metastable defects 
form when the strain reaches a critical value, resulting in the 
recovery of the tensile resistant capacity.

Furthermore, to illustrate the local distortion during the 
armchair-direction tension, the potential energy curves are 
shown in figure 5. It is found that the epoxy-to-ether transfor-
mation causes initial destabilization in the potential energy of 
the structure, but the energy disturbance is limited in the local 
area, which verifies the metastability of such defects in D-GO. 
This phenomenon, described as the plasticity-like behaviors 
in both directional tensions, further confirms that the diago-
nally-arranged epoxy groups weaken the chirality-dependent 
plasticity of D-GO. Compared with the results of A-O, it can 
be concluded that the brittle–ductile–brittle transition of GO is 

Figure 4.  (a) Mechanical properties of monolayer D-GO ( f  =  0.15, ϕ  =  ∞) under uniaxial tension along the armchair (cyan) and zigzag 
(red) directions. (b) Schematic of the tensile deformation of a hexagonal unit. (c) The schematic of bond angles and the curves of the 
variation of angle α and γ.

Figure 5.  Computed potential energy of D-GO for the local 
distortion. Three units are marked in the upper-left inset as A, B, 
and C, respectively. The gray and red balls denote carbon and 
oxygen atoms, respectively. The red, black, and blue energy–time 
curves correspond to the three marked units.

J. Phys. D: Appl. Phys. 50 (2017) 385305
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mainly due to the different defect evolution which is also asso-
ciated with the distribution of epoxy groups. After the energy 
minimization in the initial stage, uniaxial tension is applied 
on the monolayer D-GO in the armchair direction with a con-
stant engineering strain rate of 109 s−1. In stage I, the potential 
energy curves of the three units increase linearly because of 
the bond stretching. The sudden enhancements in those three 
curves refer to the local distortions induced by chemical-
bond rupture. It was found that the B-unit first distorts in the 
simulation, which is due to the epoxy-to-ether transformation. 
Then in stage II, the energy disturbance is limited within the 
local area so that the whole structure is still stable and can sus-
tain the tensile load-bearing ability. Finally, in stage III, when 
the size of the defects extends to the critical value, brittle 
failure will occur in the whole structure, resulting in a slump 
of the potential energy. The interactions among A, D and R 
types in the neighboring cells are shown in figure S3. When 
uniaxial tension is applied on the monolayer GO, the epoxy-
to-ether transformation occurs in the A unit first because the 
epoxy covalent bond in A undergoes more strain. After that, 
the D unit begins to be damaged by tension, as shown in 
figure S3(b). As the strain increases, the crack initiates here, 
and then propagates further along the defects. Note that in the 
R unit, only the hydroxyl group is not damaged because the 
tensile strain energy was released by the failure of units A and 
D. Furthermore, the closed-ring defects will be formed when 
the tensile strain increases to the yield point.

The fracture toughness of the sheets is calculated as a func-
tion of the strain rate, plotted in figure S4, along with size. 
Interestingly, the fracture toughness slightly decreases when 
the loading rate exceeds 10 000 m s−1, that is, the plasticity 
of the GO sheets will disappear under the high strain rate. 
The epoxy-to-ether transition under high-strain-rate loading 
would happen instantly so that the crack propagates along the 
linear defect, which will lead to the brittle fracture. The same 
phenomenon occurs as the size of the sample decreases to the 
critical value, which is 10 nm or less. Here, the critical value 
refers to the size that can maintain the closed-ring defects, that 
is, the GO sheets that exceed critical dimensions will show 
plasticity.

The influence of the proportion of oxygen functional groups

Besides the influence of the oxygen content, the proportion of 
the different oxygen functional groups also plays an impor-
tant role in the mechanical properties of GO. From the tensile 
results of GOs (figure 6), it can be found that nonlinear-to-
linear elastic transition mainly depends on the proportion of 
the epoxy and hydroxyl groups. In general, it has been veri-
fied that there are also many oxygen functional groups on the 
surface affecting the deformation properties of GO [26, 64]. 
Hence the monolayer GO models ( f  =  0.15) with randomly 
distributed (R-GO) epoxy and hydroxyl groups with different 
ratios ϕ (1:0, 4:1, and 1:1) were built for uniaxial tension tests. 
We found that the chirality-dependence on mechanics disap-
pears due to the random distribution of oxygen functional 
groups. Stress–strain results of the uniaxial tension which 
were performed in the armchair direction are demonstrated 

in figure  6, where the red, green, and blue symbols denote 
the different ratios of the oxygen functional groups in R-GO. 
Interestingly, we found that all the strengths were approxi-
mately equivalent (σs  =  37–39 GPa) in those three different 
cases, as well as the fracture strain (~0.12). This could be clar-
ified by the fact that the quantity of sp3 carbon atoms changes 
slightly as the ratio ϕ increases to a certain range, and besides, 
the sp2 carbon network is disrupted by the local C–C sp3 
hybridization of the functional groups, both of which deter-
mine the strength of monolayer GO [26]. However, there is 
an exception when ϕ is close to zero, in which the absence of 
epoxy groups results in thoroughly brittle fracture behaviors.

In particular, stress–strain curves in figure 6 reveal that the 
deformation processes of R-GOs exhibit a nonlinear–linear–
nonlinear transition with an increasing hydroxyl ratio. Here, 
the first nonlinear elastic deformation refers to the strain-
hardening behavior, that is, the modulus decreases as the 
strain increases. The linear elastic deformation means that the 
modulus of GO is a constant, whereas the second nonlinear 
elastic deformation is the strain-softening behavior, which 
is the reverse of the first case. A previous study considered 
that the nonlinear elastic deformation behaviors of pristine 
graphene, which is interpreted as strain-softening, could be 
simplified as the superposition effect of bond-stretching and 
angle-changing [65]. From this point of view, the nonlinear 
elastic behaviors of GO (i.e. red triangles in figure 6) can be 
explained by the strain-softening mechanism, that is hydroxyl 
groups cannot change the deformation mechanism when com-
pared with graphene [66], merely reducing the stiffness by 
disturbing the sp2 bonds network. Moreover, a certain number 
of hydroxyl groups create significant hydrogen-bonding inter-
action, which is the reason why GOs with more hydroxyl 
groups possess a higher Young’s modulus. In addition, an 
unloading simulation was carried out in the case of ϕ  =  1:1 to 

Figure 6.  Mechanical properties of monolayer GO with randomly 
distributed oxygen functional groups ( f  =  0.15, ϕ  =  1:0, 4:1, and 
1:1) under armchair tension. The red, green, and blue symbols 
denote different ratios of oxygen functional groups. The tensile 
strengths of different monolayer GOs in the armchair direction are 
calculated to be 37–39 GPa. A typical loading–unloading curve 
(ϕ  =  1:1) is illustrated in the bottom-right corner. The error bars 
correspond to  ±1 standard deviation in the material properties 
obtained from three different structures with random spatial 
distributions of functional groups.
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distinguish whether the GO is elastic or plastic before a frac-
ture occurs. The stress–strain curve of this loading/unloading 
process is illustrated in the inset of figure 6, which indicates 
that the monolayer GO is elastic when the tensile strain 
is lower than 0.12 because there is no residual strain in the 
stress–strain curve. The increased ratio ϕ features the stress–
strain result (green squares in figure 6) with linear elasticity. It 
means that the nonlinear elastic response could be suppressed 
by the epoxy groups, by which structure wrinkling of mono
layer GO could be observed, resulting in the characteristic 
entropic elastic behaviors in a thin membrane structure, that 
is, the entropic elasticity is attributed to the wrinkling [35]. 
The entropic elasticity can also be interpreted as the strain-
hardening mechanism. If both hydroxyl groups and epoxy 
groups are introduced into GO, the elastic deformation of 
GO will be determined by the strain-hardening or -softening 
competing mechanism. When the entropic contribution is bal-
anced with the intrinsic nonlinear elasticity, the mechanical 
deformation of monolayer R-GO displays a linear elasticity, 
such as the result of ϕ  =  4:1 (figure 6). The results show that 
specific deformation characteristics can be readily achieved 
by changing the ratio of oxygen functional groups.

To further study the mechanism of wrinkle-induced 
entropic elasticity, we present the influence of epoxy groups 
and hydroxyl groups on the out-of-plane displacement of 
monolayer R-GO. Colored height maps during the tensile pro-
cess are shown in figure 7. In the tensile direction, monolayer 
R-GO exhibits a distinct altitudinal difference (figure 7(e)), 
which means that the entropic elasticity induced by epoxy 
groups plays a greater role in the mechanical responses corre
sponding to the blue square symbols in figure 7(a) (ϕ  =  1:0). 
It is noted that the surface morphology of monolayer R-GO 
maintains wrinkling even during the whole tensile process, 
which is caused by vacancy and distorted defects evolving 
from the epoxy-to-ether transformation (figures 7(f) and (g)). 
Then monolayer GO will be flattened with a gradual increase in 
tensile strain, in which the tensile resistance keeps increasing 
because of the reduced degree of freedom. In addition, we find 

that the two models both have significant height differences 
in the out-of-plane direction at 0.14 strain (figures 7(d) and 
(h)). This phenomenon can be referred to as lateral wrinkling, 
which mostly occurs in the thin membrane structure [28, 67], 
and the closed-ring defects (figures 7(d) and (h)) further con-
firm that monolayer GO with a certain proportion of epoxy 
groups is plastic when the tensile strain is beyond 0.12.

To gain further insight into this idiosyncratic elastic defor-
mation, the continuum mechanics method has been utilized 
to understand the constitutive relation of graphene in a pre-
vious study [66]. The experimental force–deformation rela-
tion formula describes a nonlinear stress–strain relation as 
follows [4]:

Σ = Eη + Dη2,� (3)

where E and D are the Young’s modulus and the third-order 
nonlinear elastic modulus of monolayer graphene, respec-
tively. Σ represents the second Piola–Kirchhoff stress and η is 
the Lagrangian strain. However, for the graphene with oxygen 
functional groups, the entropic elastic effect should be consid-
ered. Here, we propose an amendatory stress–strain formula:

Σ = (E − K1φ) η + (D + K2φ) η
2,� (4)

where K1, K2 are correction coefficients which could be 
related to the oxygen content, the atomistic distributions, and 
the ambient temperature, etc, and φ is the relative content 
of the epoxy groups (φ  =  Nepoxy/(Nepoxy  +  Nhydroxyl)). Here, 
the products of φ and K1, and K2 are a phenomenological 
description of the strain-hardening and -softening competing 
mechanism. Due to the complexity of the synergistic effect 
of such factors, we obtain the theoretical value of the coef-
ficients by fitting the results (φ  =  0, 1) computed in MD 
simulations. To demonstrate this modified formula, theor
etical fitted stress–strain curves are demonstrated in figure 8 
based on equation (2), in good agreement with MD simulated 
results (φ  =  0.5, 0.8). In addition, the ultimate strength, ulti-
mate strain, scalar nonlinear coefficients, and fitting param
eters are listed in table 1, as compared with quantum chemical 

Figure 7.  The colored height maps in the plane of GOs without displaying the functional groups. ϕ  =  1: perspective view (a), top view 
(b)–(d); ϕ  =  ∞: perspective view (e), top view (f)–(h).
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calculations. This theoretical stress–strain formula may be 
useful for the study of the complicated deformation of GO or 
other graphene derivatives. It should be noted that equation (4) 
is a semi-empirical formula of the description of nonlinear 
elastic behavior, which is only valid within the elastic defor-
mation stage. Thus, when it reaches the fracture stage, the 
semi-empirical formula equation  (4) will fail. Based on the 
constitutive relation of graphene, we calculated the elastic 
modulus and the third order modulus of ten models by fitting 
the stress–strain relation. There are strong linear relationships 
between the modulus and oxygen content. Thus, the results of 
the linear fitting are used in place of terms E and D to define 
the deformation behavior of the GO. The correction factors 
(K1 and K2) mainly represent the influence of the oxygen con-
tent on the modulus, that is, the modification is valid only for 
the elastic deformation stage.

Conclusions

In conclusion, by changing the content, distribution and 
proportion of oxygen functional groups, some anoma-
lous in-plane mechanical properties of GO monolayer are 

systematically investigated. The monolayer GO exhibits 
a brittle–ductile–brittle transition as the oxygen content 
increases from 0.05–0.45, which is mainly due to the dif-
ferent defect evolution mechanisms. We find that the arm-
chair-arranged epoxy groups cause the chirality-dependent 
plasticity, resulting from the epoxy-to-ether transformation-
induced closed-ring defects. For diagonal-patterned epoxy 
groups, diagonal symmetric defects can weaken such chi-
rality-dependent plasticity. These analyses further explain 
the plastic fracture behavior of GO. On the other hand, when 
changing the proportion of oxygen functional groups, GO 
exhibits the strain-hardening or -softening competing mech
anism which dominates the linear–nonlinear–linear elastic 
deformation. After combining the influences of in-plane and 
out-of-plane characteristics, such as covalent bonds, hydroxyl 
bonds interaction and entropic elasticity, we further propose 
a modified stress–strain formula to illustrate the deformation 
mechanism based on the continuum mechanics theory, which 
agrees well with the MD results. These results demonstrate 
that the elastic–plastic mechanical properties of graphene can 
be engineered through the oxygen functional groups, which 
can be extended to other 2D materials.
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